

AFRL-IF-RS-TR-2002-207
Final Technical Report
August 2002

SA-CIRCA: SELF-ADAPTIVE CONTROL FOR
MISSION-CRITICAL SYSTEMS

Honeywell Technology Center

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. G428

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2002-207 has been reviewed and is approved for publication

APPROVED:
 JOHN J. CROWTER
 Project Engineer

 FOR THE DIRECTOR:
 JAMES A COLLINS
 Acting Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
Aug 02

3. REPORT TYPE AND DATES COVERED
Final Jun 98 – Nov 99

4. TITLE AND SUBTITLE
SA-CIRCA: SELF-ADAPTIVE CONTROL FOR MISSION-CRITICAL
SYSTEMS

6. AUTHOR(S)
David J. Musliner, Robert P. Goldman, Michael J. Pelican, Kurt D. Krebsbach,
Edmund H. Dunfee, Kang G. Shiu, Haksun Li and Ella Atkins

5. FUNDING NUMBERS
C - F30602-98-C-0212
PE - 62301E/62702F/63728F
PR - G428
TA - 01
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFTD
3701 North Fairfax Drive 525 Brooks Rd
Arlington, VA 22203-1714 Rome, NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-207

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: John J. Crowter, IFTB, 315-330-1459, crowterj@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The goal of this effort was to begin extending the Cooperative Intelligent Real-Time Control Architecture (CIRCA) with
abilities to automatically monitor its own performance and adapt in real-time, forming Self-Adaptive CIRCA (SA-CIRCA).
CIRCA is a coarse-grain architecture designed to control autonomous systems which require both intelligence,
deliberative planning activity and highly reliable, hard-real-time reactions to safety threats. CIRCA allows systems to
provide performance guarantees that ensure they will remain safe and accomplish mission-critical goals while also
intelligently pursuing long-term, non-critical goals. The SA-CIRCA project took several steps towards extending this
architecture with the ability to reason accurately about its own real-time behavior, and adapt that behavior in response
to performance feedback. Due to a change in the direction of this research, the SA-CIRCA project was only partially
funded. As a result, the development of the architecture and demonstrations was not completed. Major issues
investigated during this project include formally verifying real-time control plans, dynamically decomposing long-term
plans into sub-goals, and building real-time control plans using probabilistic information to reason about most-likely
states first. The primary technical products of this research project are two versions of CIRCA’s controller-synthesis (or
planning) algorithm. The first version automatically generates reactive control plans and verifies their correctness using
formal model-checking methods. The second version does not use model checking to verify its plans, but uses a novel
form of probabilistic reasoning to restrict its planning effort to the most-likely future system state.

15. NUMBER OF PAGES
48

14. SUBJECT TERMS
Mission-Critical Systems, Self-Adaptive Systems, unmanned Autonomous Vehicles,
Mission Planning, Machine Learning, Artificial Intelligence 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

TABLE OF CONTENTS

LIST OF FIGURES II

PREFACE III

SUMMARY 1

1. Introduction 2
 1.1. The SA-CIRCA Architecture 2
 1.2. Progress 3

2. Overview of CIRCA 3

3. Verifying State Space Plans 7
 3.1. The CIRCA SSP 7
 3.2. Model Checking for Plan Verification 11
 3.3. Multi-Model Verification 15
 3.4. RelatedWork 16

4. The Probabilistic State Space Planner 17

5. The Adaptive Mission Planner 18
 5.1. Requirements for the AMP 18
 5.2. Interface to the CSM 19
 5.3. Potential Starting Points 21
 5.4. Using SIPE-2 for the AMP 22
 5.5.. Using Prodigy for the AMP 22

6. Demonstrations 24
 6.1. The UAVSimulation 24
 6.2. Demonstrations of the Architecture 26
 6.3. Demonstrations of the PSSP 26

7. Conclusions 28

REFERENCES 31

Appendix A. CIRCA-II and the Probabilistic State Space Planner 32

LIST OF FIGURES

1. The SA-CIRCA architecture. 2

2. The simulated Puma robot arm domain. 4

3. Example transition descriptions given to CIRCA’s planner. 5

4. Sample output from the TAP compiler. 6

5. Summary of the CIRCA state space planning process. 7

6. A simple domain description for a UAV threatened by radar-guided missiles. 9

7. Simple UAV controller for evading radar-guided SAM threats. 10

8. The input model and clock zone analysis for the example UAV domain. . . . 14

9. Conceptual view of multiple reactive controllers. 19

10. Comparing existing planners against AMP requirements, we find no perfect
match. 21

11. The demonstration simulation illustrates an SA-CIRCA-controlled aircraft re-
sponding to attacks with evasive maneuvers, flares, chaff, and counterattacks. 25

12. The PSSP probability rate functions for the demonstration domain. 27

13. The PSSP state space when only IR missile threats are handled. 28

14. The PSSP state space when only radar missile threats are handled. 29

15. The PSSP state space when radar missile threats are handled in one plan,
and a contingency plan is built for IR missile threats. 29

ii

PREFACE

The work reported here was conducted by the Honeywell Technology Center, Minneapolis,
MN, during the period June, 1998 through December 1999 under Rome Air Force Research
Laboratory contract F30602-98-C-0212. Mr. John J. Crowter was the AFRL project officer
for the contract.

iii

SA-CIRCA: Self-Adaptive Control for

Mission-Critical Systems

SUMMARY

This is the final report for the Defense Advanced Research Projects Agency (DARPA)

contract F30602-98-C-0212 entitled “SA-CIRCA: Self-Adaptive Control for Mission-Critical

Systems.” The goal of this contract effort was to begin extending the Cooperative

Intelligent Real-Time Control Architecture (CIRCA) with abilities to automatically

monitor its own performance and adapt in real-time, forming Self-Adaptive CIRCA

(SA-CIRCA). CIRCA is a coarse-grain architecture designed to control autonomous

systems which require both intelligent, deliberative planning activity and highly reliable,

hard-real-time reactions to safety threats. CIRCA allows systems to provide performance

guarantees that ensure they will remain safe and accomplish mission-critical goals while

also intelligently pursuing long-term, non-critical goals. The SA-CIRCA project took

several steps towards extending this architecture with the ability to reason accurately

about its own real-time behavior, and adapt that behavior in response to performance

feedback. The SA-CIRCA project was only partially funded, so the development of the

architecture and demonstrations was not completed. Major issues investigated during this

project include formally verifying real-time control plans, dynamically decomposing

long-term plans into subgoals, and building real-time control plans using probabilistic

information to reason about most-likely states first.

The primary technical products of this research project are two versions of CIRCA’s

controller-synthesis (or planning) algorithm. The first version, developed by Honeywell,

automatically generates reactive control plans and verifies their correctness using formal

model-checking methods. The second version, developed by the University of Michigan on

subcontract, does not use model checking to verify its plans, but uses a novel form of

probabilistic reasoning to restrict its planning effort to the most-likely future system states.

1

Domain Model

Goals

Planner
Adaptive Mission

feedback data

controller code

Evaluator Generator

Code Module Synthesizer

plan

schedule

subgoals,partial domains

Evaluators Learning

Code Modules

Real-Time Subsystem Scheduler

Local Domain Model

State Space Planner

Environment

Local Subgoals

Controller Synthesis Module

Figure 1. The SA-CIRCA architecture.

1. Introduction

This is the final report for the Defense Advanced Research Projects Agency (DARPA)

contract F30602-98-C-0212 entitled “SA-CIRCA: Self-Adaptive Control for Mission-Critical

Systems.” The goal of this contract effort was to begin extending the Cooperative

Intelligent Real-Time Control Architecture (CIRCA) with abilities to automatically

monitor its own performance and adapt in real-time, forming Self-Adaptive CIRCA

(SA-CIRCA). CIRCA is a coarse-grain architecture designed to control autonomous

systems which require both intelligent, deliberative planning activity and highly reliable,

hard-real-time reactions to safety threats. CIRCA allows systems to provide performance

guarantees that ensure they will remain safe and accomplish mission-critical goals while

also intelligently pursuing long-term, non-critical goals. The SA-CIRCA project took

several steps towards extending this architecture with the ability to reason accurately about

its own real-time behavior, and adapt that behavior in response to performance feedback.

1.1. The SA-CIRCA Architecture

As illustrated in Figure 1, SA-CIRCA was designed to meet the requirements for

real-time self-adaptive control software operating autonomously and safely for extended

periods of time in dynamic environments. Building on the proven real-time planning and

control capabilities of the original CIRCA architecture (lightly shaded in Figure 1),

SA-CIRCA was designed to provide revolutionary self-modeling, performance evaluation,

and adaptation functions through several key new technology developments (dark shading):

• An Adaptive Mission Planner that manages long-term mission planning and
adaptation, developing mission plans while reasoning about performance evaluation,

2

evaluator feedback, resource restrictions, and dynamic goals.

• An Evaluator Generator that analyzes plans and monitors system goals, and
builds sentinel processes that monitor system activities and the environment to

recognize threats to goal achievement and opportunities to optimize performance.

• Performance Evaluators that provide descriptions of system failures, or
operations/capabilities that would improve system performance. These descriptions

can be used to pull existing code from a library, or as inputs to a Code Module

Synthesizer.

These new capabilities were designed to add self-evaluation and long-term self-adaptive

behavior to the existing CIRCA architecture, which provides:

• A Real-Time Subsystem (RTS) that predictably executes real-time control plans.
• A State Space Planner and Scheduler that cooperate to reason about internal
models of the world and dynamically program the RTS with a planned set of

reactions guaranteed to keep the system safe. These control plans are called TAP

(Test Action Pair) schedules. Together, the SSP and Scheduler are components of the

Controller Synthesis Module (CSM).

1.2. Progress

The SA-CIRCA project was only partially funded, so the development of all the planned

architecture features and demonstrations was not completed. Major issues investigated

during this project include formally verifying real-time control plans, using probabilistic

reasoning to control the complexity of control plan synthesis, and dynamically

decomposing long-term plans into subgoals.

This research project has yielded two primary technical products:

• An integrated controller-synthesis (or planning) algorithm that automatically
generates reactive control plans and verifies their correctness using formal

model-checking methods (see Section 3).

• An alternative controller-synthesis (or planning) algorithm that uses probabilistic
information to plan for the most-probable contingencies first (see Section 4).

In addition, we conducted preliminary investigations into the design of SA-CIRCA’s top

level component, the Adaptive Mission Planner, using two existing AI planning systems

(see Section 5). Section 6 describes the simulated UAV demonstrations we developed to

illustrate the behavior of SA-CIRCA controllers in real-time, mission-critical environments.

2. Overview of CIRCA

CIRCA is designed to support both hard real-time response guarantees and unrestricted

Artificial Intelligence (AI) methods that can guide those real-time responses. Figure 1

3

Figure 2. The simulated Puma robot arm domain.

illustrates the architecture, in which the AMP and CSM reason about high-level problems

that require their powerful but potentially unbounded planning methods, while a separate

Real-Time Subsystem (RTS) reactively executes the automatically-generated plans and

enforces guaranteed response times. The AMP and CSM modules cooperate to develop

executable reaction plans that will assure system safety and attempt to achieve system

goals when interpreted by the RTS.

CIRCA has been applied to real-time planning and control problems in several domains

including mobile robotics and simulated unmanned aircraft (UAVs). A UAV example will

be discussed in detail in Section 3. To introduce the key CIRCA concepts in this section,

we draw examples from the domain illustrated by Figure 2, in which CIRCA controls a

simulated Puma robot arm that must pack parts arriving on a conveyor belt into a nearby

box. The parts can have several shapes (e.g., square, rectangle, triangle), each of which

requires a different packing strategy. The control system may not initially know how to

pack all of the possible types of parts— it may have to perform some computation to

derive an appropriate box-packing strategy. The robot arm is also responsible for reacting

to an emergency alert light. If the light goes on, the system must push the button next to

the light before a fixed deadline.

In this domain, CIRCA’s planning and execution subsystems operate in parallel. The CSM

reasons about an internal model of the world and dynamically programs the RTS with a

planned set of reactions. While the RTS is executing those reactions, ensuring that the

system avoids failure, the AMP and CSM are able to continue executing heuristic planning

methods to find the next appropriate set of reactions. For example, the AMP may derive a

new box-packing algorithm that can handle a new type of arriving part. The derivation of

this new algorithm does not need to meet a hard deadline, because the reactions

concurrently executing on the RTS will continue handling all arriving parts, just stacking

4

EVENT emergency-alert ;; Emergency light goes on

PRECONDS: ((emergency nil))

POSTCONDS: ((emergency T))

TEMPORAL emergency-failure ;; Fail if don’t attend to

PRECONDS: ((emergency T)) ;; light by deadline

POSTCONDS: ((failure T))

MIN-DELAY: 30 [seconds]

ACTION push-emergency-button

PRECONDS: ((part-in-gripper nil))

POSTCONDS: ((emergency nil) (robot-position over-button))

WORST-CASE-EXEC-TIME: 2.0 [seconds]

Figure 3. Example transition descriptions given to CIRCA’s planner.

unfamiliar ones on a nearby table temporarily. When the new box-packing algorithm has

been developed and integrated with additional reactions that prevent failure, the new

schedule of reactions can be downloaded to the RTS.

CIRCA’s State Space Planner builds reaction plans based on a world model and a set of

formally-defined safety conditions that must be satisfied by feasible plans [11]. To describe

a domain to CIRCA, the user inputs a set of transition descriptions that implicitly define

the set of reachable states. For example, Figure 3 illustrates several transitions used in the

Puma domain. These transitions are of three types:

Action transitions represent actions performed by the RTS.

Temporal transitions represent the progression of time and continuous processes.

Event transitions represent world occurrences as instantaneous state changes.

The SSP plans by generating a nondeterministic finite automaton (NFA) from these

transition descriptions. The SSP assigns to each reachable state either an action transition

or no-op. Actions are selected to preempt transitions that lead to failure states and to

drive the system towards states that satisfy as many goal propositions as possible. A

planned action preempts a temporal transition when the action will definitely occur before

the temporal transition could possibly occur. The assignment of actions determines the

topology of the NFA (and so the set of reachable states): preemption of temporal

transitions removes edges and assignment of actions adds them. System safety is

guaranteed by planning action transitions that preempt all transitions to failure, making

the failure state unreachable [11]. It is this ability to build plans that guarantee the

correctness and timeliness of safety-preserving reactions that makes CIRCA suited to

mission-critical applications in hard real-time domains.

The NFA is translated into a memoryless controller for downloading to the RTS. This is

5

#<TAP 10>

Tests : (AND (PART_IN_GRIPPER NIL) (EMERGENCY T))

Acts : push_emergency_button

Max-per : 9984774

Runtime : 2520010

#<TAP 9>

Tests : (AND

(PART_IN_GRIPPER NIL)

(EMERGENCY NIL)

(PART_ON_CONVEYOR T)

(NOT (TYPE_OF_CONVEYOR_PART SQUARE)))

Acts : pickup_unknown_part_from_conveyor

Max-per : 12029856

Runtime : 3540010

#<TAP 8>

Tests : (AND

(TYPE_OF_CONVEYOR_PART SQUARE)

(PART_IN_GRIPPER NIL)

(EMERGENCY NIL))

Acts : pickup_known_part_from_conveyor

Max-per : 12029856

Runtime : 3520010

Figure 4. Sample output from the TAP compiler.

done through a two-step process. First, the action assignments in the NFA are compiled

into a set of Test-Action Pairs (TAPs). The tests are a set of boolean expressions that

distinguish between states where a particular action is and is not to be executed. Each

TAP’s test expression is derived by examining all of the planned actions and finding a

logical expression that distinguishes between the states in which the current TAP’s action

is planned and the states in which other actions are planned. Some sample TAPs for the

Puma domain are given in Figure 4.

Eventually, the TAPs will be downloaded to the RTS to be executed. The RTS will loop

over the set of TAPs, checking each test expression and executing the corresponding action

if the test is satisfied. The tests consist only of sensing the agent’s environment, rather

than checking any internal memory, so the RTS is asynchronous and memoryless.

However, before the TAPs can be downloaded, they must be assembled into a loop that will

meet all of the planned deadlines, captured as constraints on the maximum period of the

TAPs (see Figure 4). This second phase of the translation process is done by the scheduler

in the CSM. In this phase, CIRCA’s scheduler verifies that all actions in the TAP loop will

be executed quickly enough to preempt the transitions that the planner has determined

need preempting. The tests and actions that the RTS can execute as part of its TAPs have

associated worst-case execution times that are used to verify the schedule. If the scheduling

6

Transition Descriptions Goals

Temporal
Constraints

NFA

TAPs

Verified TAP Schedule

PLANNER

TAP Compiler

SCHEDULER

Figure 5. Summary of the CIRCA state space planning process.

does not succeed, the SSP will backtrack to revise the NFA, leading to a new set of TAPs

and another scheduling attempt. The planning process is summarized in Figure 5.

3. Verifying State Space Plans

3.1. The CIRCA SSP

The CIRCA SSP automatically synthesizes timed discrete-event controllers for hard

real-time applications. The input to the SSP is a description of a control problem in the

form of environment dynamics (including uncontrollable processes and threats to system

safety), actions available to the controller, and goals to be realized. The SSP returns a

controller that is guaranteed to maintain the safety of the controlled system. The controller

specifies what action should be taken for each reachable system state. The controller

provides safety guarantees by meeting the timing requirements of the control problem;

these timing requirements are inferred from the model of the uncontrollable processes that

threaten the system. To determine that these timing requirements are met, our algorithm

consults a model-checker for real-time automata. This model-checking is done on an

incremental basis, as the controller is built.

For example, Figure 6 contains the transition descriptions for a simple UAV control

problem. The transitions describe a problem in which a UAV is attempting to follow a

normal flight path (hence the *goals* statement). However, at any time during its flight,

the UAV might be tracked by enemy radar. Some time after the initial tracking, a

surface-to-air missile (SAM) may be launched. If no countermeasures are taken, that SAM

may destroy the UAV after at least a certain minimum amount of time has passed (e.g.,

the minimum flight time of the missile). The UAV has available to it some evasive

7

maneuvers that will cause the SAM to miss the UAV, if the UAV initiates its maneuvers

quickly enough. Also, since the maneuvers divert the UAV from its nominal trajectory, the

UAV should end its evasive behavior whenever possible.

Figure 7 shows the state space resulting from a simple timed controller design that will

preserve the safety of the UAV. In the initial state, labeled “State 17” and shown as a

shaded oval, the UAV is on its normal trajectory and has no indication of a radar-guided

missile tracking it. This is a desirable state, so the controller will make no effort to leave it.

However, at any time, a radar threat could occur, moving the system into state 16. The

controller will react to this threat by taking evasive action, and maintaining the evasive

maneuvers until the missile has been avoided (i.e., until the system has entered state 24).

At this time the threat has been neutralized, and the system is free to return to its normal

flight path. This controller was automatically generated by CIRCA, and the state diagram

was generated from CIRCA data structures by the daVinci program [5].

There are several important aspects to note about this example state space model, or finite

automaton. First, note that the automaton contains loops: the UAV may be threatened by

more than one missile, and will remain in (or re-start) evasive maneuvers as long as it is

threatened. Second, observe that time is not an explicit part of the state representation.

This is critical to the compact representation of looping plans; if we included time in the

state representation, then loops would not occur and persistent reactive control against an

unpredictable or adversarial world would explode the state space. Instead, our automaton

neatly encodes the continously-reactive behavior of the UAV in a compact, efficient, and

automatically-generated form. Of course, the transitions do have temporal semantics, as

described in Figure 6.

The SSP’s temporal model was carefully designed to support reasoning about system safety

with only a minimal amount of temporal information, thus limiting the complexity of the

automata model. We associate with each transition a set of bounds on the time (∆) which

the system must dwell in the transition’s source state before the transition could possibly

occur. The model includes four different types of transitions:

Temporal Transitions — Drawn as double arrows, temporal transitions represent

uncertain processes that may lead to change, but only after at least some minimum

amount of time has passed (∆ ≥ min∆). The only temporal transitions in our simple
UAV example lead to failure, and are not shown in Figure 7 because the

safety-preserving controller design makes failure unreachable.

Event Transitions — Drawn as single arrows, event transitions represent instantaneous

transitions that are out of our control, and may happen any time their preconditions

are satisfied. They are essentially the same as temporal transitions with a min∆ of

zero.

Action Transitions — Drawn as dashed arrows, action transitions represent processes

that are guaranteed to occur before the system has dwelled a certain amount of time

in the source state. That is, action transitions will definitely occur before ∆ reaches

8

(setf *goals* ’((path normal)))

;; Radar-guided missile threats can occur at any time.

(make-instance ’event

:name "radar_threat"

:preconds ’((radar_missile_tracking F))

:postconds ’((radar_missile_tracking T)))

;; You die if don’t defeat a threat by 1200 time units.

(make-instance ’temporal

:name "radar_threat_kills_you"

:preconds ’((radar_missile_tracking T))

:postconds ’((failure T))

:min-delay 1200)

;; It takes no more than 10 time units to start evasives.

(make-instance ’action

:name "begin_evasive"

:preconds ’((path normal))

:postconds ’((path evasive))

:max-delay 10)

;; We defeat missile in between 250 and 400 time units.

(make-instance ’reliable-temporal

:name "evade_radar_missile"

:preconds ’((radar_missile_tracking T)

(path evasive))

:postconds ’((radar_missile_tracking F))

:delay (make-range 250 400))

;; It takes no more than 10 time units to end evasives.

(make-instance ’action

:name "end_evasive"

:preconds ’((path evasive))

:postconds ’((path normal))

:max-delay 10)

Figure 6. A simple domain description for a UAV threatened by radar-guided missiles.

9

evade_radar_missile

State 23
(PATH EVASIVE)
(RADAR_MISSILE_TRACKING T)

end_evasive radar_threat

State 24
(PATH EVASIVE)
(RADAR_MISSILE_TRACKING F)

begin_evasive

temporal

event

reliable
temporal

action

State 16
(PATH NORMAL)
(RADAR_MISSILE_TRACKING T)

radar_threat

State 17
(PATH NORMAL)
(RADAR_MISSILE_TRACKING F)

Figure 7. Simple UAV controller for evading radar-guided SAM threats.

10

an upper bound max∆.

Reliable Temporal Transitions — Drawn as bold single arrows, reliable temporal

transitions represent processes that are guaranteed to occur, if given enough time.

They have both lower and upper bounds on the dwell time the system must stay in

the source state before the reliable temporal transition will occur

(min∆ < ∆ < max∆).

Using this information, the SSP reasons about one key temporal relationship: preemption.

A transition t is preempted iff some other transition u from the same state must definitely

occur before t could possibly occur. In other words, t is preempted iff

max∆(u) < min∆(t). In our UAV example, the radar_threat_kills_you transition is

preempted in state 16 by the action transition begin_evasive.

Preemption is the key temporal relationship in CIRCA models because it allows the SSP to

build discrete event controllers that make certain parts of the potential system state space

unreachable. By making all potential failure states unreachable, the SSP can build plans

(controllers) that are guaranteed to keep the system safe, while also pursuing other

less-critical goals. The goal of plan verification, discussed in the next section, is to prove

that the preemptions CIRCA has planned will in fact hold true for all possible future world

“trajectories” (i.e., paths through the reachable states).

Note that the begin_evasive action does not actually disable the

radar_threat_kills_you transition: it simply begins the process of defeating the threat,

which is represented by the reliable temporal transition evade_radar_missile. So if we

were to draw the temporal transitions to failure (TTFs) in the graph of Figure 7, we’d see

that the radar_threat_kills_you TTF is actually preempted out of both state 16 and

the subsequent state 23. This is called a dependent temporal chain, because the amount of

time left to preempt the TTF in state 23 is not the original minimum dwell time (as it was

in state 16), but the original min∆ minus however much time the system may have dwelled

in state 16 before transitioning to state 23. Since CIRCA reasons about worst-case

circumstances, we can assume that that dwell time, in the worst case, is equivalent to the

upper bound dwell time (max∆) imposed by the planned action begin_evasive, so that

the new min∆ in state 23 is actually 1200 − 10 = 1190.

Thus our temporal model is actually non-Markovian: the temporal semantics of the TTF

out of state 23 depend on the path the system takes to get there. Naturally, this

complicates the process of reasoning about the temporal model, and motivates our use of

model checking to verify the required TTF-preemption properties.

3.2. Model Checking for Plan Verification

In order to verify that the CIRCA SSP’s plans are safe, we must project what will happen

when they are executed. We must determine whether the actions we have planned do, in

fact, preempt all possible transitions to failure. To do so, we use techniques developed in

the computer-aided verification research community; specifically we use techniques for

11

verifying properties of timed automata [1].

A naive algorithm for CIRCA plan verification is easy to propose: start at the initial

state(s), find all the possible successor states, and repeat. If you ever enter a failure state,

the verification has failed.

The problem with this algorithm is hidden in the definition of system state. To determine

the possible successor states, we must know how long transitions have been enabled. For

example, to determine at state 23 whether radar_threat_kills_you happens before or

after evade_radar_missile, we must know whether the former transition has been active

for 1200 time units before the latter has been active for 400 (see Figure 6).

Imagine that each transition has associated with it a timer, or “clock.” When the

transition is enabled, that clock is reset to zero and started. When the transition is

disabled, that clock is turned off. Whenever that clock goes over the lower bound on the

corresponding transition, the transition may occur; the transition is guaranteed to occur

before the upper bound on the transition (unless some other transition intervenes).

Thus we can characterize the full state of the controlled system by the full set of feature

values and a vector of artificial clock values. For example:
flight_path = evasive

radar_missile_tracking = true

clock(evade_radar_missile) = 40

clock(radar_threat_kills_you) = 700

By comparing this state against the problem definition given in Figure 6, you may readily

see that this state is safe. radar_threat_kills_you cannot take place for 500 more time

units, by which time evade_radar_missile will have preempted it.

Unfortunately, the verification problem, as naively framed, is not practically solvable. Since

the clocks are integer-valued,1 the set of system states is infinitely large. However, the set

of interesting values is less than infinite, since there are only a finite number of decisions

that need be made. For example, all values of clock(radar_threat_kills_you) that are

over 1200 are equivalent. However, the number of relevant states may still be very large.

3.2.1. Timed Automata Representation

Fortunately, researchers in computer-aided verification have found ways to compactly

represent states like this for a class of finite state machines called timed automata [1].

Timed automata differ in a few minor ways from SSP state machines, but SSP state

machines can be translated into timed automata. Timed automata states are composed of

a location (corresponding to an SSP state, or feature vector) and a clock-interpretation, or

vector of clock values. All of the clocks increment synchronously, but can be independently

reset to zero by selected transitions. Transitions themselves are instantaneous. Temporal

constraints in timed automata take two forms: transition guard expressions that must be

true to enable a transition, and state invariant expressions that must be true all the time

1Although time is continuous, it may be discretized without loss of accuracy for any verification problem.

12

the system remains in a particular state.

Mapping an SSP state space model into a timed automaton is a fairly simple matter of

assigning different clocks to different CIRCA transitions and translating the CIRCA

transition timing constraints into timed automaton clock constraints. Once this translation

is complete, the timed automaton model can be passed to our model-checking code, the

Real-Time Analysis (RTA) module, to determine whether failure is reachable and, if so,

what path of transitions leads to failure (to guide CIRCA’s intelligent backjumping).

Figure 8a illustrates the RTA timed automaton that corresponds to CIRCA’s solution to

the UAV example of Figure 7. Briefly, the automatic translation process involves mapping

each type of SSP state space transition, as follows:

Temporal Transitions — Temporal transitions require the system to dwell in a state for

a certain amount of time before the transition may occur. This corresponds exactly

to a transition guard expression in RTA. Thus temporal edges are each assigned a

clock, and have guard expressions constraining the value of that clock to be greater

than the temporal transition’s minimum delay. The clock is reset by all edges

entering the source state of the temporal edge, if that edge does not come from a

state in which the same temporal is enabled.

Event Transitions — Because event transitions can occur at any time, they have no

associated clocks and are simply unrestricted edges in the RTA graph.

Action Transitions — Recall that action transitions place an upper bound on the time

the system may dwell in the transition’s source state before it necessarily will move

to the transition’s sink state. In our RTA model, this corresponds to an upper bound

state invariant expression. Each instance of an action transition (action edge) is

assigned a new clock. The clock is reset by all edges entering the source state of the

action edge, if that edge does not come from a state in which the same action is

enabled. The action edge itself has no guarding clock constraints; instead, the action

edge’s upper bound is expressed as an invariant in the edge’s source state.

Reliable Temporal Transitions — Reliable temporals combine the lower-bound and

upper-bound timing constraints of temporals and actions, so their RTA mapping uses

transition guards to represent the lower bounds and state invariants to represent the

upper bounds.

3.2.2. Efficient Model Checking

The critical concept for taming the complexity of timed automaton verification is an

equivalence relation (“region equivalence”) between system states [1]. This equivalence

relation makes use of the intuition that all values for a given clock are equivalent above a

maximum value (the largest constant the clock is ever compared to). Furthermore, since we

are only concerned with the reachability of various states, the actual values of different

clocks in a state are not as important as their relative values. Because the clocks are all

notionally incremented at the same rate, the relationships between the clock values upon

entry to a state is sufficient to determine which outgoing transitions are possible: a clock

13

initial transition
Guard: ()
Resets: (1 2 3 4)

RTA−Location 0
NIL
Invariant: ()

radar_threat
Guard: ()
Resets: (4 3)

RTA−Location 1
SSP−State 17
(PATH NORMAL)
(RADAR_MISSILE_TRACKING F)
Invariant: ()

RTA−Location 2
FAILURE
Invariant: ()

evade_radar_missile
Guard: (c(2) >= 250)
Resets: (1)

radar_threat_kills_you
Guard: (c(3) >= 1200)
Resets: NIL

RTA−Location 3
SSP−State 23
(PATH EVASIVE)
(RADAR_MISSILE_TRACKING T)
Invariant: (c(2) <= 400)

radar_threat
Guard: ()
Resets: (3 2)

end_evasive
Guard: ()
Resets: NIL

RTA−Location 4
SSP−State 24
(PATH EVASIVE)
(RADAR_MISSILE_TRACKING F)
Invariant: (c(1) <= 10)

begin_evasive
Guard: ()
Resets: (2)

radar_threat_kills_you
Guard: (c(3) >= 1200)
Resets: NIL

RTA−Location 5
SSP−State 16
(PATH NORMAL)
(RADAR_MISSILE_TRACKING T)
Invariant: (c(4) <= 10)

initial transition
Guard: ()
Resets: (1 2 3 4)

RTA−State 0
Location 0 = SSP−State NIL
Invar: ()
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(0 2) #(0 1) #(0 2) #(0 2) #(0 2)
#(0 2) #(0 2) #(0 1) #(0 2) #(0 2)
#(0 2) #(0 2) #(0 2) #(0 1) #(0 2)
#(0 2) #(0 2) #(0 2) #(0 2) #(0 1)

radar_threat
Guard: ()
Resets: (4 3)

RTA−State 1
Location 1 = SSP−State 17
Invar: ()
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)

begin_evasive
Guard: ()
Resets: (2)

RTA−State 2
Location 5 = SSP−State 16
Invar: (c(4) <= 10)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(1201 0) #(0 1) #(0 1) #(1201 0) #(1201 0)
#(1201 0) #(0 1) #(0 1) #(1201 0) #(1201 0)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)

evade_radar_missile
Guard: (c(2) >= 250)
Resets: (1)

RTA−State 3
Location 3 = SSP−State 23
Invar: (c(2) <= 400)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(1201 0) #(0 1) #(1201 0) #(1201 0) #(1201 0)
#(0 1) #(0 1) #(0 1) #(0 1) #(0 1)
#(10 1) #(0 1) #(10 1) #(0 1) #(0 1)
#(10 1) #(0 1) #(10 1) #(0 1) #(0 1)

end_evasive
Guard: ()
Resets: NIL

radar_threat
Guard: ()
Resets: (3 2)

RTA−State 4
Location 4 = SSP−State 24
Invar: (c(1) <= 10)
#(0 1) #(0 1) #(−250 1) #(−250 1) #(−250 1)
#(0 1) #(0 1) #(−250 1) #(−250 1) #(−250 1)
#(400 1) #(400 1) #(0 1) #(0 1) #(0 1)
#(410 1) #(410 1) #(10 1) #(0 1) #(0 1)
#(410 1) #(410 1) #(10 1) #(0 1) #(0 1)

evade_radar_missile
Guard: (c(2) >= 250)
Resets: (1)

RTA−State 5
Location 3 = SSP−State 23
Invar: (c(2) <= 400)
#(0 1) #(0 1) #(0 1) #(0 1) #(−250 1)
#(10 1) #(0 1) #(10 1) #(10 1) #(−250 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(−250 1)
#(0 1) #(0 1) #(0 1) #(0 1) #(−250 1)
#(420 1) #(410 1) #(420 1) #(420 1) #(0 1)

(a) Input finite automata. (b) Clock-zone expansion.

Figure 8. The input model and clock zone analysis for the example UAV domain.

14

that is behind another cannot catch up (within a state). Based on this equivalence relation,

it can be shown that any timed automaton (SSP plan) has only a finite number of states.2

Therefore, the problem of determining reachability (SSP plan verification) is decidable.

A further optimization is possible, to make verification practical. The key intuition behind

this optimization is that all reachability questions hinge on pairwise comparisons between

clock values. In order to determine whether or not one transition can occur, we compare a

single clock against a constant. To determine whether one transition occurs before another,

we only need to determine which will reach its associated constant first. To answer this

question, we only need to know the difference between pairs of clock values (since the clock

values increase at the same rate).

Therefore, we can compactly represent clock regions using a difference-bound matrix [4]

whose entries represent bounds on the difference between pairs of clocks and between single

clocks and a dummy clock whose value is always zero. Difference-bound matrices have two

advantages. First, they provide a compact representation for equivalence classes of

clock-states in timed automata. Second, they also have a canonical form, derived using any

standard all-pairs shortest-path algorithm [4]. Putting the associated difference-bound

matrices into canonical form makes it easy to determine when two automaton states are

equivalent. Recognizing equivalent states is, in turn, necessary in order for reachability

search to terminate.

Figure 8b illustrates the reachability verification of the SSP plan given in Figure 6,

optimized by the use of difference-bound matrices. Space limits preclude us from describing

the difference bound notation in detail. However, a simple examination of Figure 8b shows

one notable aspect of the RTA verification: there are two RTA states (3 and 5) that

correspond to the SSP state 23. That is, the RTA algorithm has recognized the distinction

between the two routes into SSP state 23 (see Figure 7) as being a temporally significant

difference. The temporal transition to failure from state 23 will have different amounts of

time left on its clock depending on whether we enter from state 16, where it was already

enabled, or state 24, where it was not enabled (see Figure 8a, RTA-locations 5 and 4).

Thus the RTA algorithm is unrolling the important paths through dependent temporal

chains, checking reachability of failure by removing the original non-Markovian temporal

semantics.

3.3. Multi-Model Verification

The original model-checking interface captured the connectivity and temporal restrictions

of the SSP’s state space graph and sent it Kronos for reachability verification, to make sure

that failure is not reachable. One weakness with this approach is that it relies on our SSP

implementation to reason effectively about the “execution semantics” of the actual RTS

TAP plans that will be generated by the SSP. That is, we relied on our SSP code to

correctly map the SSP state space model into TAPs: we were verifying the SSP state space

2More precisely, there are only a finite number of state equivalence classes, and state equivalence classes

are sufficient to determine reachability.

15

model, which was then converted into TAPs after the verification. The alternative is to

actually map TAPs directly into Kronos simulation/verification models, so that Kronos can

reason about the interactions of the planned TAPs directly with the SSP’s world model,

and essentially verify that the SSP has correctly built both its state space model and the

TAP plan. This approach uses multiple concurrent state machine models to represent all

exogeneous transitions and TAPs. This “multi-model” analysis approach will verify that

the TAP-based RTS implementation of a CIRCA plan will actually support all the

performance guarantees that the SSP believes it will. This approach also offers the

opportunity to take advantage of Kronos’ efficient state-space cross-product behavior: the

model checker is good at deriving minimal cross-products that avoid enumerating

unnecessary system states.

Unfortunately, once we implemented the necessary interfaces translating the CIRCA TAP

plans into multi-model verification problems, we encountered significant scalability

problems with Kronos. When it detects a verification failure (because some failure state is

reachable in a tentative SSP plan), Kronos is unable to efficiently produce an example

state-space path leading from the start state to failure. Apparently because Kronos does

some pre-enumeration of the combinatorially-explosive cross product of multiple state

machines, it does not scale well on these problems.

As a result, we also be began extending our customized RTA verifier to the multi-model

case. The multi-model RTA (MMRTA) system has been prototyped and passed initial

tests, but we suspended the remaining work (prior to ANTS funding) to focus on the

system demonstrations and final report. The remaining MMRTA work, which is not too

complicated, is to automate the translation of a CIRCA SSP verification problem into the

multi-model RTA input format.

Note that the MMRTA will inherently reason about “ghosting,” which is our term for

actions that were planned for some state A, but occur in some different state B, because of

an exogenous transition that moves the world from A to B after the RTS has sensed A, but

before the RTS has executed the action. The MMRTA will automatically reason about

these situations since it will expand the state space including possible orderings of TAP

activities and exogenous transitions. While we expect MMRTA to inherently detect

problem situations where ghosted actions lead to failures, it will take some additional work

to modify the SSP to use that information in guiding its search/backjumping.

3.4. Related Work

The CIRCA SSP is a reaction planner, and thus has much in common with work on

reactive systems in AI and control theory. CIRCA is unusual in two ways: it automatically

synthesizes, or plans, its reactions, and it provides performance guarantees through the

methods of hard real time.

In independently-developed work, Asarin, Maler, Pneuli and Sifakis [2, 9] developed a

game-theoretic method of synthesizing real-time controllers. They view the problem as

trying to “force a win” against the environment, by guaranteeing that all traces of system

16

execution will pass through (avoid) a set of desirable (undesirable) states. Their method is

very similar to ours, but their work stopped at the development of the algorithm and

derivation of complexity bounds; it was never implemented. Our work concentrates on the

implementation aspects of this problem and on making it computationally practical.

Kabanza, et. al. have developed work [6, 7] very similar to ours in intention. Their early

work (fully presented in [7]) is similar to the original CIRCA State Space Planner work,

but does not take into account metric temporal information. Later work [6], extends the

original framework by incorporating metric time, but does so by effectively imposing a

system-wide clock and progressing the controller one “tick” at a time. In control problems

with widely varying time constants, this approach will lead to an explosion of states; we

have adopted model-checking techniques that minimize this state explosion.

Markov Decision Processes and Partially-Observable Markov Decision Processes provide a

theoretical basis for planning and action that is similar to discrete control theory, but they

place the accent on uncertainty [3]. CIRCA simply represents uncertainty through

nondeterminism: CIRCA transitions may have alternative outcomes; uncontrollable events

may or may not occur; etc. The SSP techniques discussed in this paper do not attempt to

reason about quantified measures of uncertainty, they make the worst-case assumption:

“anything bad that can happen will happen.” However, there has been some preliminary

work on developing a probability model for CIRCA, to permit principled model-pruning

decisions [8].

4. The Probabilistic State Space Planner

When faced with overconstrained problems, the CSM described above is unable to find a

safety-preserving plan, and it returns failure to the AMP. At that time, the AMP is

designed to relax one or of the constraints on the CSM, perhaps by redesigning the

problem configuration to include a faster action transition, or modifying a goal. Our

University of Michigan colleagues have been working on a new version of the SSP that uses

probabilistic information to guide the system in considering the most-probable states first.

As a result, the Probabilistic State Space Planner (PSSP) is able to build partial plans

that are only probabilistically safe, because they only consider those states whose

likelihood is above a given threshold. This type of partial plan is useful in situations where

the domain is highly challenging, and the CSM may have only a limited amount of

computation time to come up with a suitable control plan for the next phase of CIRCA

operations. Or, the RTS itself may have limited abilities to sense and react to the world,

and these may preclude the CSM from generating a complete real-time controller, and

require some performance tradeoffs. In any case, by explicitly pruning least-probable areas

of the state space, the PSSP approach allows CIRCA to optimize its allocation of reactive

resources. Moreover, if additional planning-time resources are available and the RTS is the

limiting factor, the system can build contingency plans to handle pruned areas of the state

space and swap those plans in when the pruned, less-likely situations arise.

Michigan’s progress on this system are described in the attached technical paper,

17

Appendix ??. The results of their work are illustrated in the demonstrations described in

Section 6.

5. The Adaptive Mission Planner

Our investigation into the CIRCA Adaptive Mission Planner (AMP) pursued several

research branches before ending prematurely due to an unexpected budget reduction. We

began by clarifying the role of the AMP, and designing the problems it must solve to

control and guide the CSM. Since the AMP requirements are similar to existing AI

planners (much more so than the CSM), we explored the possibility of using an existing

planner, with enhancements, to fill the AMP role. As described below, we investigated the

SIPE-2 and Prodigy planners in depth, and began prototyping experiments.

5.1. Requirements for the AMP

Based on prior experience with the CIRCA architecture and our scenario designs for the

UCAV demonstration domain, we developed a set of general functional requirements for

the AMP. We want the AMP to:

Project — The system must be able to reason about potential future states of the world,

to be a true projective planner (rather than simply reacting to the current world

state).

Search — The system must maintain an explicit representation of planning decisions for

possible re-evaluation and change.

Build Phases for the CSM — The primary AMP responsibility is to divide up the

overall problem state space into a series of overlapping regions of competency, or

phases. The CSM will then build real-time reactive control plans for each phase.

Modify Phases when the CSM Fails — If the CSM fails to generate a safe controller

for a given subproblem, the AMP must modify its plans to reduce the complexity of

that phase.

Incorporate Changes During Execution — Because the AMP is the long-term

planner in CIRCA, it must be able to handle deviations from its coarse plan as the

situation progresses.

Set up Execution-Time Sentinels/Monitors — The AMP must be able to

automatically monitor its own performance to detect deviations from the plan.

Plan for Domain Resources — The AMP must build plans that account for domain

resources such as fuel.

Manage Reasoning Resources — The AMP must control the CIRCA reasoning

process itself, so that the CSM builds controllers in a timely fashion; if the phase

problems sent to the CSM are badly formed, the CSM may never return success or

failure. The AMP must monitor CSM performance and adjust its plans to meet the

soft real-time deadlines imposed by the domain.

Incorporate New Operators — The SA-CIRCA architecture calls for the ability to

synthesize new code modules in response to changing performance results; the AMP

18

GOAL

START

REGIONS OF REACTIVE
PLAN COMPETENCE

ENTIRE STATE SPACE

(STABLE REGIONS)

Figure 9. Conceptual view of multiple reactive controllers.

must be able to reason about new, dynamically-created domain operators that can be

used to improve performance.

Optional functional requirements include abilities to:

Plan for Multiple Agents — Distributed applications of CIRCA will require the AMP

to communicate and coordinate with other agents to effectively manage roles,

responsibilities, and closely-coordinated behaviors.

Direct Execution — The AMP should direct the overall execution of real-time control

plans by managing the plan cache in the RTS; this requires interleaving execution

and planning.

Synthesize New Operators — In the full SA-CIRCA design, one way the AMP may

respond to performance deviations is to actually design and synthesize new operators

that give it missing domain capabilities.

5.2. Interface to the CSM

While developing these requirements, it became clear that there is a fundamental mismatch

between the output of a standard planner (a plan), and the input we require for the CSM.

To understand this problem, recall that the AMP is notionally responsible for dividing up

the overall problem state space into a series of overlapping regions of competency, as shown

in Figure 9. The CSM will then build real-time reactive control plans for each region of

competency. If the CSM is unable to build a feasible plan for a particular region, then the

AMP must reorganize/replan to develop a different breakdown of the state space, or

possibly give up on some of its goals. In essence, the AMP is responsible for breaking up a

large problem into smaller problems for the CSM to solve, and adjusting that breakup to

compensate for difficulties the CSM may encounter.

The interface between the AMP and CSM is non-obvious because the CSM requires as

input a “problem configuration” consisting of a set of temporal and event transitions

19

(describing the domain events and processes), a set of action transitions (describing control

actions that can be taken), a set of starting states, and a set of goal states (or conditions).

In contrast, a traditional planner’s output is a plan consisting of a set of primitive

operators, possibly with associated parameter bindings. We want the AMP to be able to

search for suitable sequences of problem configurations, potentially varying any and all

aspects of the configurations (e.g., adding new action transitions when automatic code

synthesis provides custom-built primitives, removing temporal transitions with low

probabilities, varying action transition delay parameters, etc.).

How can we map an AMP’s operator/parameter plan formulation into the complex

structure of a CSM problem configuration?

The unique, very powerful approach we are currently pursuing involves extending the

domain representation of the AMP to include explicit representation of the problem

configuration elements. That is, rather than have the AMP only think about the domain,

we have the AMP also think explicitly, in its search space, about the CSM problem

configurations. The AMP will plan with both domain operators and “configuration

operators” that modify the problems sent to the CSM.

For example, high-level UCAV domain activities include aircraft trajectories, missile

threats, etc. These will be reflected in the AMP representation as “domain operators.”

The AMP will use these domain operators to build a coarse-grain plan through the

domain, specifying, for example, that the mission will consist of an ingress phase, an attack

phase, and an egress phase. The AMP will use the CSM to develop more detailed

controllers to invoke during each of these phases. To task the CSM with problem

configurations for each of these phases, the AMP must also decide, for example, which of

several reactive evasive-maneuver actions should be made available to the CSM for use in a

particular phase. The AMP will have “configuration operators” that can add or remove

those action transitions from the problem configuration sent to the CSM. The

configuration operators will not directly affect the AMP’s domain model, because they are

below the level of detail that the AMP is projecting the world. However, by changing the

details of the problem configurations sent to the CSM, these configuration operators may

have significant impact on the CSM’s results.

Now suppose the CSM is unable to produce a safe controller for the given problem

configuration, and the AMP must make some change. Because the configuration operators

that built the CSM problem configuration are treated just like domain operators, the

AMP’s search machinery works on them just like other operators. So the AMP can search

over the set of possible problem configurations by searching over its configuration operator

choices. In other words, the configuration operators bring the CSM problem configurations

under the direct control of the AMP search machinery, which is exactly what we want: the

AMP can now reason explicitly about how it is breaking up larger problems into smaller

ones, and how the smaller problems are structured.

20

Feature SIPE 2 Prodigy PRS MACBeth

Projection
√ √ √

Search
√ √ √

Build CSM Phases
Modify on CSM Failure

√ √ √ √

Handle Execution Failures
√ √ √ √

Set up Monitors
√ √

Plan for Domain Resources
√ √

Manage Reasoning Resources
Incorporate New Operators

√

Multi Agent Planning
√

Direct Execution
√ √ √

Synthesize New Operators

Figure 10. Comparing existing planners against AMP requirements, we find no perfect
match.

5.3. Potential Starting Points

Since the AMP requirements are similar to existing AI planners, we explored the possibility

of using an existing planner, with enhancements, to fill the AMP role. Based on our

knowledge of the planning literature, we selected several different larger-scale planning

systems (that have been relatively well-developed and used) to evaluate against the AMP

requirements. Figure 10 summarizes our comparison against SIPE-2, Prodigy, PRS, and

MACBeth.

Based on this comparison, we tried to build initial AMP functionality in SIPE-2, as

described in the next section. When this effort failed, we moved on to Prodigy, and the

project budget cut occurred shortly after our investigation into Prodigy was concluded.

PRS was considered, but because it is fundamentally a reactive system and not a

projective planner, it is most useful for “hand-coding” or programming AMP behaviors.

PRS does not work by building a plan of future actions and revising it as execution occurs;

instead, PRS repeatedly selects only the next action to take. This makes it very flexible

and responsive to changing circumstances, but subject to the short-sightedness of

reactivity. For the AMP, this means PRS is useful for quickly building known functions

and behaviors (as was done in the original CIRCA implementation [10]), but not as a

long-term solution capable of model-based adaptivity.

MACBeth is a constraint-based planner using hierarchical task networks, developed at

Honeywell for tasking and control of robot and UAV systems. MACBeth does not have the

long history of development and applications shared by the other systems we evaluated,

21

but it has powerful resource reasoning based on constraints. Major problems with

MACBeth include its lack of interleaved execution and monitoring, and the difficulty of

incorporating new planning operators in the code.

5.4. Using SIPE-2 for the AMP

SRI’s SIPE-2 planner is a well-established system that appears to provide many of the

features we require, and it has been used in several commercial real-world applications.

The government funded SIPE’s development, and Rome Labs already has rights to the

software. We obtained object-code versions of the system directly from SIPE-2’s primary

developer, Dr. David Wilkins at SRI.

SIPE-2 is an HTN-style planner, meaning that it builds plans by joining together pieces of

hierarchical task networks. The documentation indicates that SIPE-2 supports reasoning

about domain resources and parallel actions (nonlinear plans). The planner works by

repeatedly selecting problems with the current partial plan and resolving them, using code

modules called critics. These plan critics check the global constraint network for

inconsistencies, identifying resource conflicts and problematic interactions between

unordered actions. The planner can represent context-dependent effects, supports

interactive or automated search for solutions, and has some replanning functionality. The

system also includes a GUI and a few small demonstration domains.

Unfortunately, while the outward appearance gives a good match to our needs, we found it

impractical to work with SIPE-2. Initially, we encountered numerous small but fatal bugs

in the GUI, interaction metaphors, and demonstration scripts. We engaged in several

iterations of bug-reports and patches with SRI, but the SIPE-2 user interface is particularly

clumsy and the complexity of the system’s behavior is a challenge. SRI personnel including

Dr. David Wilkins and Dr. Karen Myers were very helpful in getting us up to speed.

Once we got the system working on its example domains, we implemented very preliminary

UAV-like domains and generated simple plans in these domains. In one of the SRI

demonstration domains, we were also able to get the replanning functions to operate,

although only on a very simple replanning problem. Efforts to employ similar replanning in

our UAV domains were futile. Expected SIPE-2 functions such as resource reasoning,

replanning, and even heuristic search guidance are undocumented, more difficult to use

than expected, or possibly even unusable without the planner’s source code. In addition, it

became clear that the SIPE-2 API is not sufficient for our needs, being largely

undocumented. Brittleness in the system made it virtually impossible to develop domains

that varied significantly from the examples included with the distribution. Finally, after

several months of effort, we concluded that it was not feasible to use SIPE-2 without the

source code, and we abandoned the effort.

5.5. Using Prodigy for the AMP

We re-examined our AMP requirements and decided to investigate the Prodigy planner

from CMU to see if it would be easier to use for an AMP prototype. Prodigy is freely

22

available for research, and we already had the system, source code, and experts on-site.

Prodigy is a goal regression planner that backchains from set of initial goals, building plans

that always consist of a totally ordered sequence of operators. Prodigy operates in a

nonlinear fashion, choosing which goal or subgoal to work on based on a variable heuristic

formed from control rules. Prodigy can consider operators with limited types of conditional

effects, and it supports the notion of “applying” an operator to provide more complex

forms of forward operator inference that cannot be regressed over.

Preliminary results with Prodigy were much better than with SIPE-2: we implemented

simple domains, debugged several problems with the planner’s source code in fairly short

order, and identified several required enhancements that were only feasible because we had

the source code. Positive aspects of Prodigy include:

• Simple operational concept, well documented.
• Source code available, fairly well written.
• Useful directed backjumping and replanning.
• Simple support for interleaved planning and execution.
• In-house HTC expertise (Dr. Karen Haigh).

In the process of building and testing a small UAV demonstration domain for Prodigy, we

encountered several problems that indicate major weaknesses, for our purposes. These

include:

• No true parallel actions.
• Little or no effective resource reasoning.
• No way to handle goals of avoidance (e.g., don’t run out of fuel).
• No direct control of search backtracking.

5.5.1. Goals of Avoidance

One of the key aspects of the UAV planning domain that we had difficulty encoding into

Prodigy is the notion that the system must not produce plans that use up more fuel than

the aircraft has. We’d like to express a “goal of avoidance:” always avoid the situation

where fuel is zero or less. Note this is different from standard goals of achievement (“get to

the goal”), even with negation. Standard achievement goals are not true during some early

part of the plan, and the plan makes them true. The plan is valid whether the goal is true

or not. With a goal of avoidance, however, we must produce plans in which the undesirable

situation never occurs: we must never run out of fuel. If we simply tell Prodigy that we’d

like to have fuel greater than zero, it will happily run the fuel below zero and then try to

add a new operator that will restore the goal (perhaps by refueling). Of course, it is not

satisfactory to have a plan that runs out of fuel, and then tries to refuel.

We need a new type of goal, for which any violation is treated as a planning failure and

leads to backtracking/replanning. Implementing this type of goal requires fundamental

changes to the planning behavior of Prodigy: it must check all of these goals of avoidance

23

each time it projects a new state, and initiate backtracking if any are violated. We made

this change to the Prodigy code, and successfully demonstrated the new behavior. As a

result, we can now properly handle certain types of avoidance goals.

5.5.2. Motivating the Use of Problem Configuration Operators

Perhaps the most interesting and planner-independent observation made during our

prototyping efforts was the challenge of “motivating” the Prodigy planner to include the

appropriate CSM problem-configuration operators into the mission plan. Prodigy plans

actions that achieve a subgoal; the problem with configuration operators is that they do

not directly achieve any subgoal, but rather configure the description of the problem for

the CSM to examine. For example, in a phase of the mission where a heat-seeking missile

is a likely threat, we have several configuration operators that should be included in the

AMP plan so that, when that segment of the AMP plan is passed to the CSM for

controller synthesis, the CSM accounts for that missile threat. We’d essentially like all of

the applicable configuration operators to be applied by default, and then have the AMP’s

search mechanisms explicitly decide which configuration operators to remove if necessary.

For example, if the CSM is unable to build a feasible plan with the missile threat

accounted for, the AMP can either replan the route or decide to not worry much about the

missile threat, omitting those configuration operators from the plan and thus “assuaging”

the CSM’s conservative worries.

We have not yet solved the problem of motivating the addition of configuration operators;

it appears that this functionality should also be added to the core planning behavior of the

algorithm, but the exact definition and structure of the modification is not yet complete.

We face the difficulty that making a very large planning system like Prodigy do new things

is very challenging.

6. Demonstrations

As noted above, we guided the SA-CIRCA project design and development tasks by aiming

towards scenarios in which SA-CIRCA controls a UAV engaged in combat missions. We

hoped to obtain a ready-made simulation of UAV systems from Wright Patterson AFB,

but licensing issues made it impossible for them to deliver the software to us. As a result,

we were forced to enhance an existing CIRCA-compatible flight simulation to provide

simple combat-oriented simulation functions.

6.1. The UAV Simulation

Leveraging prior work on flying UAVs with CIRCA (both at Michigan and Honeywell), we

began with a demonstration system capable of simulating a simple F-16 aircraft model

flying over high-resolution terrain. The simulation only ran on high-powered Silicon

Graphics computers. The CIRCA controller was interfaced at a fairly high level, providing

waypoints and other discrete commands (e.g., deploy flaps) to the simulated aircraft. The

simulation itself provided a simple autopilot to fly towards waypoints, and an auto-throttle

function to maintain appropriate speeds.

24

Figure 11. The demonstration simulation illustrates an SA-CIRCA-controlled aircraft
responding to attacks with evasive maneuvers, flares, chaff, and counterat-
tacks.

For the SA-CIRCA demonstrations, the simulator was extensively modified to enable:

• Deployment of chaff and flares.
• Automated evasive maneuvers.
• Ground-launched IR-guided and radar-guided missiles that track the aircraft and are
distracted by flares or chaff, respectively.

• Smoke trails for aircraft and missiles, to provide persistent trajectory display.
• Projected future waypoint/path display.
• Ground-based threat installations (SAM sites and IR launch sites).
• Air-launched missiles that track ground targets.
• Low-resolution graphics display to run on Michigan’s slower machines.
• A rebuilt CIRCA command interface to allow easy expansion and provide access to
the new control functions (e.g., flare deployment).

Figure 11 shows a screengrab from one simulation run, in which the UAV has been

threatened by a surface-to-air missile (seen as a black line curving towards the aircraft) and

it is responding with flares (one of which is seen falling below the flight path) and a

counter-strike missile (seen arcing down onto the surface installation).

25

6.2. Demonstrations of the Architecture

We encoded SA-CIRCA domain models for several variant UCAV demo scenarios,

involving radar-guided and IR-guided missile threats and several actions that the aircraft

must take in response to those threats (chaff, flares, evasive maneuvers), as well as target

strike goals. For example, Figure 6 (on page 9) illustrates one fairly simple domain

encoding in which only radar-guided missiles and evasive maneuvers are considered. Using

these domains, we generated a variety of TAP controllers capable of responding to different

spectrums of threats.

These controllers were tested in the simulation, and several of the runs were videotaped for

presentation at the program review in July, 1999. Demonstrations showed the controllers

responding in a timely fashion to threats, and also communicating with high-level

replanning functions when non-critical goals were threatened. For example, in one scenario

the aircraft responds to a missile threat by evasive maneuvers and chaff, but the resulting

divergence from the planned trajectory means that the aircraft will miss its assigned “time

on target” if it resumes the prior path. So, recognizing that this goal is threatened, the

system invokes a path planner on-the-fly and derives a new trajectory that follows a

significantly different path (actually passing through a different river valley) to make up for

the lost time.

Our Michigan teammates used the same simulator, but modified the domain models to

incorporate probabilistic information suited to their demonstration scenarios, described

below.

6.3. Demonstrations of the PSSP

The goal of the PSSP demonstrations was to show that the probability information can be

used, in overconstrained domains, to shed “the right stuff:” the lowest-probability states

and contingencies. And, to show that explicit knowledge of what has been shed can be

used to build separate contingency plans that detect and react when the improbable shed

states actually occur.

The underlying assumption is that the RTS isn’t capable of making all guarantees. To keep

the demo/simulation simple, there are only 2 temporal transitions to failure (TTFs),

associated with the two types of missiles. More realistically, we would assume that our

plane would have many other failure modes to preempt. Here we assume that there are

enough other important TTFs being addressed that the remaining resources are insufficient

to guarantee reactions for both radar-guided and IR-guided missiles.

Figure 12 shows the probability rate functions used for the PSSP demos. Both IR and

radar threats are equally likely from the states in which they are enabled. However, IR

threats are enabled only when the aircraft is at low altitude, and radar threats only when

it is at high altitude. Furthermore, IR threats are more likely to kill you if they occur.

However, the aircraft is modeled as only occasionally (and, in fact, non-volitionally)

moving to low altitude, and then always returning to high altitude using the climb

26

Figure 12. The PSSP probability rate functions for the demonstration domain.

operator. These probability rate functions were defined to set up the key question: if you

can only guarantee reaction to one type of missile, which should it be?

One simple approach to trying to answer this question is to look at the probabilities

associated with the TTFs and ignore the least likely. In SA-CIRCA, this would correspond

to having the AMP not even inform the CSM of some TTFs. There are arguments for and

against this approach. The story we stress in this case is that simply looking at the TTFs

(the probability of them occurring in a state in which they are enabled) in the knowledge

base would lead us to believe that IR missiles are more likely to lead to failure when they

are used. An approach that does not model the state space probabilities would thus decide

to guarantee against IR missiles instead of radar missiles. This leads to the world model

and controller design shown in Figure 13. In this case, only IR missiles are handled because

responses could not be scheduled for everything. Of course, if radar-guided missiles are

encountered, the plane is frequently destroyed, because the CSM has not even considered

their existence.

It turns out, however, that in this domain IR missiles are not actually encountered that

often, because the plane is much less likely to be at low altitude. When the PSSP is given

the full set of TTFs and generates the state space, it discovers that the likelihood of failing

is actually greater for radar missiles: even though they are less likely to lead to failure in a

state in which they are enabled than IR missiles are in a state where they are enabled, the

probability of being in a state with radar missiles enabled is much higher. The resulting

controller and world model (state space) are shown in Figure 14.

Qualitatively, then, we might say that, in a particular mission, the probability of

27

Figure 13. The PSSP state space when only IR missile threats are handled.

encountering no missiles is relatively low, and the probability of encountering only IR

missiles is medium. The probability of encountering only radar missiles is high. The

probability of encountering both kinds of missiles is low-to-medium. Using the

probabilities, the PSSP determines that the no-missile/radar-missile combination is the

more likely. So in the above, the plan formed handles the no-missile/IR-missile cases.

Using the probability reasoning, the chances of survival are increased.

However, the aircraft may still encounter both IR and radar missiles, and now it is not

prepared for the IR type. So we actually allow the PSSP to build plans that explicitly

handle regions of the state space that were pruned for earlier controller designs, and cache

these new controllers as contingency plans. Figure 15 shows the resulting world model

when the PSSP builds the same nominal plan as above, but also builds a detection TAP for

recognizing the unhandled (IR missile) case, and pre-builds a contingency plan to handle

this case. Note that the contingency plan itself “deadends” in a state where the IR-missile

threat has been defeated. The contingency plan has its own detection TAP for reaching a

deadend state, which in turn triggers the dispatcher to retrieve a suitable plan - which in

this case is simply going back to the nominal plan.

This series of tests illustrates the increasing robustness in the system thanks to modeling

state probabilities and detecting/reacting-to unhandled states.

7. Conclusions

The SA-CIRCA research has resulted in the development of two novel planning systems

(controller synthesis algorithms). The first combines AI search techniques and heuristics

with formal model-checking methods to produce guaranteed, verified real-time control

plans with useful formal properties. The second system uses probabilities to optimally

28

Figure 14. The PSSP state space when only radar missile threats are handled.

Figure 15. The PSSP state space when radar missile threats are handled in one plan,
and a contingency plan is built for IR missile threats.

29

allocate planning effort to most-probable threats, and develop contingency plans to handle

secondary threats that are less likely. These planning techniques will form key elements of

future autonomous, self-evaluating, self-adaptive control systems that operate robustly in

mission-critical environments.

30

References
[1] R. Alur, “Timed Automata,” in NATO-ASI Summer School on Verification of Digital
and Hybrid Systems, 1998.

[2] E. Asarin, O. Maler, and A. Pneuli, “Symbolic controller synthesis for discrete and
timed systems,” in Proceedings of Hybrid Systems II, P. Antsaklis, W. Kohn,
A. Nerode, and S. Sastry, editors, Springer Verlag, 1995.

[3] C. Boutilier, T. Dean, and S. Hanks, “Decision-Theoretic Planning: Structural
Assumptions and Computational Leverage,” Journal of Artificial Intelligence
Research, vol. 11, pp. 1–94, July 1999.

[4] D. L. Dill, “Timing Assumptions and Verification of Finite-State Concurrent
Systems,” in Automatic Verification Methods for Finite State Systems, J. Sifakis,
editor, pp. 197–212, Springer Verlag, Berlin, June 1989. Proceedings of the
International Workshop.

[5] M. Fröhlich and M. Werner, “Demonstration of the interactive Graph Visualization
System daVinci,” in Proceedings of DIMACS Workshop on Graph Drawing ’94,
R. Tamassia and I. Tollis, editors. Springer Verlag, 1995.

[6] F. Kabanza, “On the Synthesis of Situation Control Rules under Exogenous Events,”
in Theories of Action, Planning, and Robot Control: Bridging the Gap, C. Baral,
editor, number WS-96-07, pp. 86–94. AAAI Press, 1996.

[7] F. Kabanza, M. Barbeau, and R. St.-Denis, “Planning Control Rules for Reactive
Agents,” Artificial Intelligence, vol. 95, no. 1, pp. 67–113, August 1997.

[8] H. Li, E. Atkins, E. Durfee, and K. Shin, “Resource Allocation for a Limited
Real-Time Agent Using a Temporal Probabilistic World Model,” forthcoming,
December 1999.

[9] O. Maler, A. Pneuli, and J. Sifakis, “On the synthesis of Discrete Controllers for
Timed Systems,” in STACS 95: Theoretical Aspects of Computer Science, E. W. Mayr
and C. Puech, editors, pp. 229–242, Springer Verlag, 1995.

[10] D. J. Musliner, CIRCA: The Cooperative Intelligent Real-Time Control Architecture,
PhD thesis, University of Michigan, Ann Arbor, 1993. Available as University of
Maryland Computer Science Technical Report CS-TR-3157.

[11] D. J. Musliner, E. H. Durfee, and K. G. Shin, “World Modeling for the Dynamic
Construction of Real-Time Control Plans,” Artificial Intelligence, vol. 74, no. 1, pp.
83–127, March 1995.

31

Appendix A.

CIRCA-II and the Probabilistic State Space Planner

32

33

Resource Allocation for a Limited Real-Time Agent Using a Temporal Probabilistic
World Model

Haksun Li, Ella Atkins*, Edmund Durfee, Kang Shin
EECS Dept., University of Michigan, Ann Arbor MI

*Aerospace Engineering Dept., Univ. of Maryland, College Park MD
{haksunli, durfee, kgshin} @umich.edu, atkins@eng.umd.edu

Abstract
In a dynamic, unpredictable world, a resource-limited

agent cannot be ready to recognize and respond fast enough
to every possible situation, and thus should prepare for
situations that are more likely to occur, and that are more
severe. The likelihood of encountering a particular world
state, however, is dependent not only on the choices of what
(re)actions the agent periodically considers, but also on how
frequently it considers them. We have developed and tested
a framework for modeling the dynamics of time-dependent
event probabilities and an algorithm for computing state
probabilities, so that our resource-limited agent can devote
its resources to the most probable eventualities over the less
probable ones.

1. Introduction
An agent with limited perceptual, computational, and

actuator resources must carefully allocate these resources
to do the best job it can in monitoring aspects of the world
state and acting appropriately to achieve its goals (and
maintain its safety) in a complex, dynamic world. If the
resource-limited agent allocates more of its resources (or
some of its resources more frequently) to monitoring for
some states (or state features), then it will be less capable
of tracking others successfully. Designing an effective
schedule of monitoring for and responding to activities
with the available resources, therefore, is a complex
optimization problem.

Although some clever techniques, such as indexing,
hashing, or grouping states together into action classes may
alleviate the problem of allocating limited resources to
some extent (Musliner, et al. 1993), the fundamental
problem is that monitoring for and responding to all
conceivable contingencies by a resource-limited agent in a
complex and dynamic domain is not realistic. It is
therefore reasonable to have the agent prioritize the use of
its resources to prepare for those situations that are most
likely to occur.

Determining the likelihood of encountering a
particular world state, however, can be challenging because
the likelihood is dependent not only on the choices of what
(re)actions the agent should perform, but also by its
choices of how frequently it checks whether to perform
them. By definition, a dynamic environment is one in
which the state can change via events outside of the agent's
control. Thus, the sooner an agent detects and responds to
a situation, the less opportunity there is for the

environmental dynamics to intervene. In the context of
events that can lead to catastrophe, this simply means that
the agent should (re)act fast enough to preempt1 such
catastrophic events.

In this paper, we present a framework for modeling the
dynamics of time-dependent event probabilities and an
algorithm for computing state probabilities. We thus can
prioritize the states of the world by their state probabilities,
so that the system can devote its resources to the most
probable eventualities over the less probable ones.

To ground our discussion, we describe our time-
dependent state-transition probability model in the context
of CIRCA-II (Section 2). In Section 3, we describe how
we model state transitions with a discrete model, and
contrast this with a continuous time model in Section 4.
We detail the state probability computation in Section 5
and contrast its performance to previous versions of
CIRCA. In section 6, we discuss how a chain of state
transitions complicates the problem and how we handle
them. Section 7 describes our stochastic simulation to
verify the correctness of the theory in practice. Section 8
concludes our works and suggests directions for
development.

2. Background
As AI systems are applied in increasingly dynamic and

complex domains, it becomes more difficult to make
assurances about how well they will perform. Techniques
have been under development to support the construction
of probabilistic plans (Kushmerick, Hanks, and Weld
1994) for applications where the actions taken by an agent
can have uncertain outcomes. Planners based on Markov
Decision Processes (MDPs) incorporate representations of
uncertainty about how actions and events may move the
world among states. MDP planners generate plans (or
policies) about what action (if any) an agent should
perform for each observable state so as to maximize the
agent's expected performance. MDP planning (Dean,
Kaelbling, Kirman, and Nicholson 1993) is most
straightforward under assumptions such as: that states are
fully observable (the agent executing the plan can know
exactly what state it is in); that event models are implicit
(the uncertainties about how events beyond the agent's

1 Preemption thus means that the agent’s action occurs before the
undesirable event, thus forestalling that event.

34

control affect the states it can reach via an action it takes
are folded into the state transition probabilities associated
with the action); and that a transition probability is
stationary (dependent only upon the state and not upon
timing associated with the state). In the terminology of
(Boutilier, Dean, and Hanks 1998), these assumptions hold
for a stationary, Fully Observable MDP with implicit event
models.

Our efforts in developing AI-based agents for real-
time applications have forced us to relax some of these
assumptions in ways different from typical relaxations
(such as for Partially Observable MDPs). In a real-time
application, not surprisingly, a core concern is "how long"
something will take. Making real-time guarantees means
that the agent must take some actions before catastrophic
events could occur. That is, between the time when a state
arises that heralds an impending event to be avoided (e.g.,
a slow-moving car enters your lane ahead of you), and the
earliest time that that event (e.g., collision) could occur
after the heralding state is entered, a real-time agent must
be assured of taking an action (e.g., swerving) that averts
the undesirable event. Because an agent is possibly
moving non-deterministically among many states, it must
be prepared to recognize and react fast enough to a number
of heralding states. Given limited sensory and processing
resources, the set of "recognition-reactions" must be
carefully selected and scheduled to ensure each is checked
frequently enough to preempt failure.

The Cooperative Intelligent Real-time Control
Architecture (CIRCA-II) is an example of a system that has
been developed for selecting, scheduling, and executing
recognition-reactions in a resource-limited system.
CIRCA-II extends the original CIRCA architecture
(Musliner et al, 1993, 1995) to use probabilities for making
resource allocation decisions and to cache plans for
foreseeable but low-probability states. The CIRCA-II
architecture is shown in Figure 2-1. Here, we concentrate
only on the relevant CIRCA-II features to explain how we
compute state probabilities in a real-time environment.
More complete treatments of the overall CIRCA-II
architecture are presented elsewhere (Atkins 1999).

Real-time
Plan Executor

 Planner
Knowledge
 BaseEnvironment

 Plan
Cache

initial state(s), subgoals,
state transitions

State-space
 Planner

Resource
Scheduler

schedules,
utilizations

TAP
 lists

Scheduler
 Database

resource usage,
real-time constraints,
fault list

TAP plans

state feedback

TAP plans

state feedback

Artificial Intelligence Subsystem
(AIS)

Real-Time Subsystem
(RTS)

CIRCA -- The Cooperative Intelligent Real-time Control Architecture.

Figure 2-1
There are two main subsystems in CIRCA-II, the

Artificial Intelligence Subsystem (AIS) and the Real-Time
Subsystem (RTS). Inside the AIS are the probabilistic
planner and the scheduler. The planner has a
representation of world states and transitions among them
in terms of a state space diagram. If there is any transition
leading to a failure state (failure transition) from a state, the
planner will plan a guaranteed action such that the failure
transition is preempted. Otherwise, it may plan a ‘if-time’
action, which is only executed should resources allow, to
get the system closer to the goal state. A design goal of
CIRCA-II's State-Space Planner is that it uses a compact
representation of the information needed to generate real-
time temporal control plans. Specifically, CIRCA-II does
not generate more than one state for any state in the state
diagram even if it can be reached via multiple paths from
the initial states. Therefore, the state diagram is not
necessarily a tree-structured diagram cyclic paths may
be introduced into it. In other words, we do not keep track
of the history, and we plan a single action for a group of
situations with the same state features (which is
represented only by one state in the state diagram),
regardless of how that state is reached. The plan developed
is thus a recognition-reaction plan. It is precisely this
characteristic that allows CIRCA-II to formulate a cyclic
schedule in which actions are planned for states (no matter
when those states are encountered) so that undesirable
transitions cannot occur.

35

Furthermore, because event probabilities depend on
which actions are scheduled and how frequently, implicit
event models become untenable because of the large space
of potential actions and each possible delay for each action.
CIRCA-II therefore explicitly models events. As pointed
out by (Boutilier, Dean, and Hanks 1998), specifying a
transition function for an action and one or more
exogenous events is generally not easy. In what follows,
we describe and evaluate our strategy for doing this.
Therefore, CIRCA-II's planning could be viewed as a
means for formulating an approximately optimal plan for a
(partially) non-stationary, FOMDP with explicit event
models.

An action planned by the planner together with the test
part for state recognition is called a Test-Action-Pair
(TAP). The set of TAPs, generated by the planner, is then
passed onto the scheduler to find a feasible schedule for all
the TAPs. The RTS is a predictable, reactive system that
repeatedly loops over the TAP schedule, executing each
TAP’s test expression (which encapsulates all the relevant
sensing actions) and executing its action if the test returns
true.

Since the scheduler is working with a RTS with
limited resources, it could be the case that not all of the
requested TAPs can be scheduled. When this occurs, the
planning system could identify and try out alternative TAP
combinations in the hope of finding one that works. Often,
however, the RTS simply may be incapable of
guaranteeing any combination of TAPs that completely
assures that all critical real-time responses are met. In such
cases, it is up to the planner to find a schedulable set of
TAPs that assures that as many of the most critical
responses are met as possible.

In this paper, we will concentrate on the planner,
which employs the new probabilistic temporal transition
framework, and plans selectively based on state
probabilities given the resource constraints of the RTS.
Here we summarize the algorithm of the planner, which is
the setting for the discussion in the later sections. The
planner, during each planning cycle, selects the most
probable state and “expands” it by applying all enabled
event transitions (whose conditions are met in the state)
and computing their time-dependent transition
probabilities. Depending on the possible consequences of
these events, the planner may select an action for the state,
and the action's resulting state will be added to the set of
possible successor states of the action. The probabilities of
each of these states are computed, and the planning cycle
loops. If one of these states has already been generated in
an earlier planning cycle, its probability (and the
probabilities of its successors, if any have yet been
generated) must be updated. The planner continues in this
cyclic manner until all reachable states have been
investigated, or until only the states whose probabilities fall
below some threshold parameter remain. If one of the low
probability "unplanned" states is actually reached, CIRCA-

II has mechanisms to detect it and replan or retrieve a
contingency plan, as are discussed elsewhere (Atkins
1999).

3. Temporal Transitions
The CIRCA-II world model is constructed from a set

of state features and state transitions included as part of the
planner knowledge base. A state in the world model is
created dynamically by applying a transition to its parent
state during planning. There are two types of transitions.
Action transitions are explicitly controlled by the plan
executor in the RTS, and thus only occur when selected
during planning. Events outside the system’s control are
modeled as temporal transitions, either “innocuous”
temporal transitions (labeled tt) or “malicious” temporal
transitions to system failure (labeled ttf).

CIRCA-II’s primary objective is to avoid system
failure. It considers goal achievement only when the safety
requirements are met. When expanding a state, CIRCA-II
bases its action selection primarily on failure avoidance
when a ttf is present, only considering proximity to the goal
when more than one action is capable of avoiding failure.
Alternatively, if no ttf is present, CIRCA-II selects the best
action, called a ‘if-time’ action, to achieve the system
goals, as described in (Musliner 1993). If no action is
required for failure avoidance or needed for goal
achievement, CIRCA-II selects no action.

As mentioned in the previous sections, we have to
model the likelihood of a transition as a function of time to
capture the dynamic nature of the world. We will detail in
what follows our framework for modeling temporal
transitions.

For a temporal transition ttj, the user specifies what is
called a “probability rate” function Prate(ttj,th) over a time
interval [th,th+1) (e.g., seconds), given that transition ttj has
been continuously active for h time steps. For example, if
a fair coin is flipped once per second, the “probability rate”
function for the transition from “heads” to “tails” has a
constant value of 0.5 (50%) over each second, regardless of
how much time has passed, given that the state is “heads”
after the flips so far. Figure 3-1a shows the probability rate
function for this coin flip example.

Many realistic state transitions can be easily defined in
terms of “probability rate”. Figure 3-1b describes when an
engine is first put into service, its “failure rate” decreases
during a break-in period. Afterwards, the rate is very small
during the normal operation period. When the engine
nears the end of its life (e.g., 2000 hours for a small
propeller-driven engine), the failure rate increases until the
engine is considered “unsafe” and must be retired.

36

t tt

Pr(tt,t) Pr(tt,t) Pr(tt,t)

a) Heads-to-tails tt. c) Minimum delay ttf.b) Engine failure tt.

min∆

0.5

max∆break-in

Figure 3-1: Temporal transition probability rate functions.
Figure 3-1c shows a transition probability rate

function for a temporal transition with a minimum delay
(min∆) before it is possible and a maximum delay (max∆)
after which the transition cannot occur. CIRCA-II must
select an action to preempt this ttf provided such an action
can be scheduled before time min∆.

Action transitions, like temporal transitions, are also
described by probability rate functions, such that the
conditional probabilities of the transitions from a state can
be computed. Equation 3-1 (where i stands for the i-th
time interval [ti, ti+1)) shows the probability rate function
we adopt for guaranteed actions. The important point to
note is that the action has an associated maximum period
(maxp) in which it must execute to preempt its ttf(s).

≥

<≤
−=

maxp) (i 0

maxpi (0
maxp

1)
)i()it,acPr((3-1)

 For ‘if-time’ (best-effort) actions, which are executed
in slack time slots produced when guaranteed actions do
not require their worst-case execution time (Musliner
1993), the probability rate function is for now a constant
value that is only a heuristic guess and can be assigned by
the user. In future work, we plan to incorporate a function
similar to that for guaranteed actions to more accurately
estimate the timing information associated with ‘if-time’
action transitions.

The probability rate function captures the probability
of an event occurring independently of other events over
any time interval. To model the dependency among a set
of tts that match a state, we can approximate the
conditional probability rate function Pcond(transj, th, sk) for
transition transj from state sk during time interval [th,th+1)
heuristically as given by Equation 3-2.

() ()() ()()
()()∑

∈∀

−

−−
≈

)(
,,1ln

,,1 ,,1ln
,,

kr stranstrans
khrrate

khratekhjrate
khjcond sttransP

stnonePsttransP
sttransP

(3-2)

Prate(transj,th,sk) is the unconditional probability of
transition transj from state sk during time interval [th,th+1).
In a continuous time model, the probability of two
transitions firing simultaneously is vanishingly small, but

in our discrete case we are considering time intervals.
Hence, there is a non-zero probability that two (or more)
transitions could fire over the same time interval. Because
we only want to allow one transition to fire (presumably,
one would come before the others in the time interval), we
have to divide the probability of a combination of
transitions among the separate transitions. Rather than
dividing it equally (treating each transition in the
combination as being equally likely to occur first in the
interval), our intuitions (borne out in Section 4) are that
more probable transitions jump in front more often.

Thus, Equation 3-2 is essentially saying that the
conditional probability in time interval [th,th+1) of a
transition from state sk is proportional to the relative
logarithm of one minus its likelihood among all other
transitions, given that the system is still in state sk in the
time interval. We will explain in Section 4 the significance
of this heuristic. Currently, Prate(none, th, sk) is calculated
using 3-3.

()()
()

∏
∈∀

−=
kr stranstrans

khjratekhrate s,h,transP)s,t,none(P 1
(3-3)

Equations 3-2 and 3-3 are heuristics to estimate the
conditional probabilities from the unconditional
probabilities given the compact representation that does not
capture conditional dependency information among the
temporal transitions. Two assumptions are made in 3-2
and 3-3 to model the conditional dependencies. First, we
are assuming that the probability of nothing happening is
calculated as if all temporal transitions were independent.
Second, we are assuming also that the conditional
probabilities of the transitions in each time step are
proportional to their unconditional probabilities.

As a simple example, let tt1 and tt2 be two temporal
transitions which have unconditional probabilities of 0.8
and 0.4 respectively at each time step. From our equations,
the conditional probabilities in any time interval are as
shown in Figure 3-3. Equation 3-5 tells us that the
transition probabilities are 0.759 for tt1 and 0.241 for tt2.

37

P(tt1) = 0.668

P(tt2) = 0.4

The unconditional probabilities of tt1
and tt2.

P(tt2) = 0.2112

P(none) =0.12

The conditional probabilities of tt1
and tt2.

P(tt1) = 0.8

Figure 3-3
In general, the problem of calculating conditional

probabilities from only unconditional probabilities is
difficult. Our heuristic, based on the two biases we have
chosen, is only one of the many ways to do the estimation.
In Section 4, we will consider this example using
continuous-time models to justify our heuristic.

To compute the state probability, CIRCA-II calculates
the transition probability for transj from state sk to another
using the (overall) cumulative probability Pcum(transj, sk).
This describes the relative probability of leaving state sk via
transj, and is equal to the sum of Pcond(transj, th, sk) * P(sk,
th) over time. P(sk, th) is the probability of the system still
being in state sk in time interval th, and it is recursively
calculated using 3-4, where P(sk, 0) = 1.0.

() () ()khratehkhk stnonePtsPtsP ,,,, 11 −−= (3-4)

Equation 3-5 computes the transition probability from
the initial time interval, (t0, t1), up to the “converged” time
interval (tn, tn+1) when either the likelihood of being in state
sk is below a preset threshold ε (i.e., P(sk,tn) < ε) or after
which all the transition probability rates are negligible
(Pcond(transj, ti, sk) < ε), where i > n.

() () ()hk
h

khjcondkjcum t,sPs,t,transPs,transP
0
∑
∞

=
=

(3-5)

4. Heuristic Justification
Equation 3-2 describes how we approximate the

relative likelihood of all the temporal transitions in a time
interval. The heuristic divides the probability of
transitioning out from a state in a particular time interval
among the alternative transitions in proportion to the

values of their probability rate functions in that time
interval. This ensures that the probability of following
multiple transitions at the same time interval is zero,
because (unless it is modeled as an explicit transition) the
probability of two transitions occurring at exactly the same
time point is zero.

We can compare the results from our heuristic in the
discrete time interval case with the results one could get
using a continuous time model. Our analysis is two-folded.
We will first show the case in which there are only
temporal transitions in a state. Then, we will consider the
case in which a state has a guaranteed action.

To simplify our analysis, we begin by assuming the
simplest case in which all probability rate functions for
temporal transitions are constant, as in the example in
Figure 3-3. If there are only temporal transitions in a state,
we can pose the question mathematically: let tt1, tt2, …, ttn
be n different independent temporal transitions which have
constant rates, r1, r2, … rn. Ti is the time that transition tti
fires. T = min{T1, T2, … Tn}. What is the probability that
P{Ti = T}?

When a temporal transition has a constant rate, the
probability of it firing in any time interval [t, t+∆t) is the
same as any other time interval. Another way of saying
this is that the probability of a transition firing after time
t+s, given that time s has elapsed is the same as the
probability of the transition firing after time t:

() ()tiTPsiTtsiTP ≥=≥+≥ |
The only real-valued functions satisfying f(s + t) =

f(s)f(t) are of the form f(t) = e-λt. Hence, the distribution of
Ti must be an exponential distribution with parameter λ. To
summarize, we have:
• The probability of tti firing after time t is te λ− .
• The cumulative probability function of tti, i.e., the

probability of tti firing before time t, is te λ−−1 .
• The probability density function of tti is te λλ − .
For independent transitions:

() ()
() () ()

()t...

ttt
n

ni

n

n

e

e...ee

tTP...tTPtTP
tT,...,tT,tTPtTP

λλλ

λλλ

++−

−−−

=

=

>>>=
>>>=>

21

21

21

21

To calculate the probability that tti fires first:

38

() () { }

()

1)-(4
1

0

0

0
111

111

111

n

i

t
i

t......

t
i

tttt

iniii

...

dtee

dtee...ee...e

tTdPtT,...,tT,tT,...,tTPTTP

inii

inii

λλ
λ

λ

λ

λλλλλ

λλλλλ

++
=

=

=

=>>>>==

∫

∫

∫

∞
−++++−

∞
−−−−−

∞

+−

+−

+−

Therefore, the relative likelihood of tti is proportional to λi
among those of all temporal transitions.

We are now ready to connect λ to rate r in the discrete
case. Let us assume that in the discrete case, the size of a
time interval is 1. So, the probability of tti firing after t, i.e,
t time intervals, is (1 – r)t. Equating this with the
continuous time counterpart above, we get:

()

()r
er

er
er tt

−−=
−=

=−

=−

−

−

−

1ln
1

1
1

λ

λ

λ

λ

Therefore, it is possible to convert from the discrete
rate, r, to the continuous rate, λ, and vice versa. Their
relationships are:

()r
er

−−=
−= −

1ln
1

λ

λ

If we substitute r into the (4-1), we get
()

()
() ()

()
() ()n

i

n

i

n

i
i

rr
r

rr
r

TTP

−++−
−

=

−−++−−
−−

=

++
==

1ln...1ln
1ln

1ln...1ln
1ln

...

1

1

1 λλ
λ

This is essentially the logarithm proportionality
heuristic in Equation 3-2, and using this formulation we get
the same transition probabilities as in Figure 3-2. λtt1 is
1.609 and λtt2 is 0.511. The transition probabilities are
therefore 0.759 for tt1 and 0.241 for tt2. This agrees with
what is calculated by Equation 3-5.

Now, let us consider a case that involves a non-
constant function. Often in CIRCA's state space diagram,
a state may have a guaranteed action if a ttf has to be

preempted. To go through the same analysis above, we
will have to have the probability density function for a
guaranteed action, ac, which has a period P. According to
our definition of a guaranteed action transition, and as in
Section 3 using the approximation2 that the action is
equally likely to fire at any time within P, we have the
following:
• The cumulative probability function of ac, i.e., the

probability of ac firing before time t is
P t if , 0

P t 0 if ,

>

≤≤P
t

• Taking the derivate of the cumulative probability
function, the probability density function of ac is

P t if , 0

P t 0 if ,1

>

≤≤
P

• The probability of ac firing after time t is

P t if , 0

P t 0 if ,

>

≤≤
−
P

tP

We can derive the probability rate function from these
equations. The probability of an ac firing in the time
interval (t1, t2) given that it has not fired before t1 is

() ()
()

1

12

1

21
121 |

tP
tt

TtP
tTtP

TttTtP

−
−

=

≤
≤≤

=<≤≤

As t2 moves toward P, keeping the time interval
(difference between t1 and t2) unchanged, the probability
rate goes to 1 as we would expect.

As in the analysis above, to calculate the probability
that tti fires first:

() () { }

()

()

() ()

∑=

−−+−=

−=

 −

=

 −

=

=>>>>>==

=

−Λ−−

Λ−Λ−

−++++−

−−−−−

+−

∫∫

∫

∫

∫

+−

+−

n

1i
i

Λ
2

Λ

00

0

......

0

0
111

λΛ where,

1
PΛΛ

1
Λ

1

......

,,...,,,...,

111

111

PiPiPi

P
t

P
t

i

P
t

i
t

P
t

i
tttt

i

P

niii

eee

dtte
P

dte

dt
P

tP
ee

dte
P

tP
eeee

tTdPtactTtTtTtTPTTP

inii

inii

λλλ

λ

λ

λ

λλλλλ

λλλλλ

This answer is much more complicated than the
logarithm heuristic we had before because of the added
consideration of a guaranteed action. In fact, when P → ∞
(an infinite period means that the probability of the action
firing in a finite time approaches zero), this expression
becomes

Λ
iλ , which is exactly what we had before.

We will also want to find the probability of the action,
ac, being the first transition to fire.

2 This is only an approximation because it ignores lag time introduced by
sensing, and also the “jump” a transition might get if it is part of a
dependent chain (see Section 5).

39

() () { }

()

∑=

Λ
−

=

=

=

=≥≥==

=

Λ−

++−

−−

∫

∫

∫

n

1i
i

0

...

0

0
1

λΛ where,

1

1

1...

,...,

1

1

P
e

dt
P

e

dt
P

ee

tTdPtTtTPTTP

P

P
t

P
tt

ac

P

ni

n

n

λλ

λλ

We have done a sanity check to verify that the sum of
all the probabilities of any transitions firing first indeed
equals 1. (This can be worked out by the reader.)

To verify how well our heuristic approximation in the
discrete case works when a state also has a guaranteed
action, we consider the following example: a state has tt1
of constant probability rate 0.1, tt2 of 0.6, and an action
with period 5. In general, the more finely we discretize the
time intervals, the better results we get. Here is a summary
of our calculations.

For the action transition:
number of

time
intervals
(discreti-

zation
level)

time each
time

interval
represents

discretized
calculation value:

action transition
probability

true value as
computed in

continuous time
domain

error rate
(per-

centage)
5 1 sec 0.200162756 0.194578 2.870137

10 0.5 sec 0.195908691 0.194578 0.683835
100 0.05 sec 0.194591233 0.194578 0.006751

For tt1 transition:
number of

time
intervals
(discreti-

zation
level)

time each
time

interval
represents

discretized
calculation

value: tt1
transition

probability

true value as
computed in

continuous time
domain

error rate (per-
centage)

5 1 sec 0.0824 0.083059 0.79281
10 0.5 sec 0.0829 0.083059 0.19083

100 0.05 sec 0.08306 0.083059 0.001806
For tt2 transition:

number of
time

intervals
(discreti-

zation
level)

time each
time

interval
represents

simulation value:
tt2 transition

probability

true value as
computed in

continuous time
domain

error rate (per-
centage)

5 1 sec 0.71735 0.722361 0.69366
10 0.5 sec 0.721167 0.722361 0.16525

100 0.05 sec 0.722349 0.722361 0.00162
Again, as suggested by the data, the more we

discretize the time intervals, the more closely our discrete
approximation matches the continuous time model even
when some transitions are not constant rate functions.
Future work will examine the limits of our discrete
approximation, such as how well it works with more
arbitrary functions. Techniques for solving a general

problem with arbitrary rate functions in a continuous time
domain can be complicated and costly. On the contrary,
our discrete approximation does not increase much in
complexity even if the probability rate functions are
arbitrary. If we can prove what our results above suggest -
-- that the discrete approximation can give arbitrarily
accurate results by discretizing more finely regardless of
the shapes of the transition functions, then our
approximation provides a simple, yet effective and
powerful method to compute transition probabilities from
domain-dependent transition functions. As will be
discussed in the later sections, from these transition
probabilities, we can compute the state probabilities
reasonably well.

5. State Probabilities
With our framework for computing transition

probabilities, we can estimate the probability of the system
ever entering a particular state in order to decide whether
to allocate resources to responding to that state. After
computing the transition probabilities, as described in
section 3, we can construct a state diagram, in which each
node corresponds to exactly one state. The state diagram
can be represented by a matrix Mij as in Figure 5-1. M[i][j]
is the transition probability from node i to node j (we will
use “node” and “state” interchangeably). Note that, given
our characterization so far, the transition probabilities
satisfy the Markov property. That is, once we have
computed the probability of transitioning from one state to
another based on the various time-dependent probability
rate functions, we can form the state transition diagram.
Given the diagram, we are now ready to compute the state
probabilities. We present a theorem from (Kemeny and
Snell 1960):

The probabilities of going from any nodes in the
transient set (a transient node is one which has outgoing
transitions, i.e., tts, ttfs, and/or actions) to any nodes in the
absorbing set (an absorbing node is one which has no
outgoing transitions) are given in the matrix:

1)1(, −−== QNwhereNRP
(5-1)

R is the matrix indicating the probabilities of going
from the transient nodes (row indices) to the absorbing
nodes (column indices) in one step. Q is the matrix
indicating the probabilities of going from the transient
nodes (row indices) to other transient nodes (column
indices) in one step.

40

Identity

R
transient states to absorbing states

Q
transient states to transient states

1 ……. n

1

n

…….

0

Figure 5-1
Both matrices, R and Q, are readily available from the

transition matrix Mij. To compute the state probabilities of
all absorbing nodes in the state diagram, we only need to
apply 5-1 once. However, to compute the probability of a
transient node, we make it into an absorbing node by
truncating all its outgoing transitions. Since we are only
concerned with the probability of ever visiting a node, all
paths coming out from the node will not further affect the
state probability even if the path subsequently enters into
the node again, i.e. a cycle. Unfortunately, N and R will
thus be different in each computation of the state
probability of each transient node. The cost of computing
the state probabilities for transient states will therefore be
higher than that for absorbing states because equation 5-1
has to be used for each transient state probability.

Here we outline the algorithm of computing the state
probabilities of all nodes in a state diagram. Let G be a
state diagram with n nodes, i initial state nodes, p
absorbing nodes, and q transient nodes. Initial states are
assumed transient. Therefore p + q = n.

1. Index the nodes of G such that the indices of the absorbing
nodes are less than those of the transient nodes. Construct
the transition matrix M for G for this particular indexing.

2. Compute R and Q from M. R = M[p+1 … n][1 … p]. Q =
M[p+1 … n][p+1 … n].

3. Compute N = (1 – Q)-1.
4. Compute P = NR.
5. P is a q * p matrix giving the probability Pij from any

transient node i to any absorbing node j. Therefore, the sum
of the probabilities from all the initial state nodes to an
absorbing node is the state probability of the absorbing node.
At this point, we have computed all the state probabilities for
all absorbing nodes.

6. For each transient node T, do:
 i. Truncate all outgoing transitions of T.
 ii. Index the nodes in G such that the indices of the

absorbing nodes are less than those of the transient
nodes. T has index 1. Construct a transition
matrix M for G for this particular indexing.

 iii. Compute R and Q from M. R = M[p+2 … n][1 …
p+1]. Q = M[p+2 … n][p+2 … n].

 iv. Compute N = (1 – Q)-1.
 v. Compute P = NR.
 vi. P is an (q – 1)* (p + 1) matrix giving the

probability PiT from any transient node i to the
absorbing node T. Therefore, the sum of the

probabilities from all the initial state nodes to T is
the state probability of T.

Algorithm 5-1: Computing state probabilities

To see how this algorithm improves CIRCA-II’s
performance, we will compare the results of computing the
state probability by the previous CIRCA-II method without
an update mechanism (Atkins 1996), and this new CIRCA-
II formulation using the example in Figure 5-2.
This example illustrates the situation of an aircraft trying to
maintain its altitude (perhaps in turbulence) and flying to
FIX2. State 1 has two transitions, tt2 and ac1, which have
constant probability rate functions of 0.9 and 0.5
respectively. The transition probabilities are 0.6429 and
0.3571 respectively as computed by Equation 3-2 and 3-3.
The previous CIRCA-II would predict that the likelihood
of reaching state 2 and state 4, the destination, are only
0.3571 (Atkins 1996), because it ignored the contribution
of ac2 which was only known to the planner after
expanding state 1. However, the probabilities should be
1.0 as computed by the new formulation, algorithm 5-1.
As the flight is able to restore a safe altitude at all times, it
can fly to its destination with certainty. This is something
that the old CIRCA-II would not conclude!

tt2 has the prob. rate function of 0.9 at
all time intervals.

ac1 has the prob. rate function of 0.5 at
all time intervals

tt1 = fly-to-FIX2

tt2 = lost-altitude

ttf1 = crash

ac1 = begin-to-fly-to-FIX2

ac2 = climb

CIRCA Aircraft Simulation State-space with Cyclic Structure.

Loc = Location along the route of flight among the various “FIX” values (a “FIX” is a navigation term).
Alt = Altitude of the aircraft (with High or Low discrete values)

INITIAL:
Loc = FIX1
Alt = High

Heading = Undef
1

INITIAL:
Loc = FIX1
Alt = High

Heading = Undef
1

Failure
5

Failure
5

ac1

ac2tt2

ttf1

tt1Loc = FIX1
Alt = High

Heading = FIX2
2

Loc = FIX1
Alt = High

Heading = FIX2
2

Loc = FIX2
Alt = High

Heading = Undef
4

Loc = FIX2
Alt = High

Heading = Undef
4

Loc = FIX1
Alt = Low

Heading = Undef
3

Loc = FIX1
Alt = Low

Heading = Undef
3

Figure 5-2
Algorithm 5-1 can accurately compute the state
probabilities given that the transition probabilities are
accurate. We described in Section 3 a means of
approximating these probabilities, but as we will see in the
next section, sometimes the calculations can be more
problematic.

6. Dependent Temporal Transitions
Although a temporal transition can fire in any of the

states, the probability rate functions of the same temporal
transition may differ across states depending on how they
are reached. When a temporal transition is triggered across
a sequence of states, its rate function in a later state must
consider the time spent in prior states. The time-dependent
probability rate functions of the event in each of the states
must take into consideration the time spent across multiple
states, such as tt1 in Figure 6-1. We call such temporal

41

transitions dependent temporal transitions (labelled dtt)
because their probability rate functions depend on their
parent states. For example, suppose the probability of
engine failure, tt1, increases with time. Then the
probability of tt1 occurring is higher in FIX2 than in FIX1
because tt1 is already "enabled" in FIX1 before the flight
enters FIX2.

tt1 = engine-failure

tt2 = fly-to-FIX2

tt3 = fly-to-FIX3

ttf1 = crash

ac1 = begin-to-fly-to-FIX2

ac2 = begin-to- fly-to-FIX3

ac3 = emergency-land

INITIAL:
Loc = FIX1

Status = Norm
Heading = Undef

INITIAL:
Loc = FIX1

Status = Norm
Heading = Undef

FailureFailure

ac1

tt1

ttf1

ac2

tt1 tt1

ttf1 ttf1
ac3 ac3

ac3

CIRCA Aircraft Simulation State-space with Tree Structure

and a Dependent Temporal Transition

Loc = FIX1
Status = Norm

Heading = FIX2

Loc = FIX1
Status = Norm

Heading = FIX2

Loc = FIX2
Status = Norm

Heading = Undef

Loc = FIX2
Status = Norm

Heading = Undef

Loc = FIX2
Status = Norm

Heading = FIX3

Loc = FIX2
Status = Norm

Heading = FIX3

GOAL:
Loc = FIX3

Status = Norm
Heading = Undef

GOAL:
Loc = FIX3

Status = Norm
Heading = Undef

tt1 tt1

Loc = FIX1
Status = Emer

Heading =FIX2

Loc = FIX1
Status = Emer

Heading =FIX2

Loc = FIX1
Status = Emer

Heading = Undef

Loc = FIX1
Status = Emer

Heading = Undef

Loc = FIX3
Status = Emer

Heading = Undef

Loc = FIX3
Status = Emer

Heading = Undef

Loc = FIX2
Status = Emer

Heading = FIX3

Loc = FIX2
Status = Emer

Heading = FIX3

Loc = FIX2
Status = Emer

Heading = Undef

Loc = FIX2
Status = Emer

Heading = Undef

Loc = LAND
Status = Emer

Heading = Undef

Loc = LAND
Status = Emer

Heading = Undef

ttf1 ttf1

ac3 ac3

tt2 tt3

Figure 6-1
Suppose state sk has a dtt, tti. If we knew from which

parent sp the system entered sk via transj, and the time tg it
spent in sp, then we could model the probability rate
function of the dtt, tti, using Equation 6-1.

())s,tt,tt(Ptrans,s,t,ttP phgiratejphidtt += (6-1)
However, this piece of information is not available

during planning. In general, there are multiple parents to
state sk, and the system can stay in any of the parent states
for a variable amount of time. Each combination of parent
state sp and time spent in sp, tg, gives rise to a particular
“shifted” probability rate function for the dtt, as described
in Equation 6-1. However, we can take the average of
these probability rate functions by weighting them by the
probabilities of the time tg spent in sp, i.e., Pcond(transj, tg,
Sp). The sum of these weights is simply the cumulative
probability of transj from sp to sk, i.e. Pcum(transj, sp).

Equation 6-2 and 6-3 describe how CIRCA-II models
a dtt based on the probability rate functions of the dtt in the
parent states.

()
() (){ }

() ()
() (){ }

∈
+

∉

=

∑
∞

=
.stranstt

s,transP
s,tt,ttPs,t,transP

,stransttt,ttP

trans,s,t,ttP

pi
t pjcum

phgiratepgjcond

pihirate

jphidtt

g

 when

 en wh

0

(6-2)

Pdtt(tti,th,sp, transj) is the "shifted" probability rate
function to reflect the effects of dependent temporal
transition (dtt), given that the current state sk is reached via

transition transj from parent state sp. If there is no tti in sp,
then the probability rate function is “unshifted”, i.e. it is
simply the unmodified probability rate function.
Otherwise, it is the sum of all probability rate functions
“shifted” by all possible time delays in sp weighted by their
relative probabilities.

The probability rate function Pdtt(tti, th, sk) for a
dependent temporal transition tti from state sk in the h-th
time interval [th, th+1), is:

()

() () ()
() ()

() () ()
() ()

+

×

+

=

∑

∑

 →∋∀

 →∋∀

k
jtrans

p

k
jtrans

p

ssj,p
jphidttkjcumphiratekinitial

ssj,p
kjcumpkinitial

khidtt

trans,s,t,ttPs,transPsP)t,tt(P)s(P

s,transPsPsP

s,t,ttP

1

(6-3)

where P(s) is the state probability of state s.
Equation 6-3 is essentially saying that Pdtt(tt, th, sk) is a

weighted average of all possible “shifted” dtts from all
parents, and it is justified in Theorem 6.1.
Theorem 6-1: If the states which have the dependent
temporal transitions comprise an acyclic graph, then the
probability rate function estimated by Equation 6-3 is the
best in terms of minimizing the mean square error at any
given time interval.
Proof: In full paper.

Complication arises when we try to apply the
formulation to world models with cyclic structures.

tt1 = out-of-fuel
ttf1 = crash

ac1 = fly-to-FIX2
ac2 = fly-to-FIX1

CIRCA Aircraft Simulation State-space (Holding Pattern) with a
Cycle and a Dependent Temporal Transition for All States in the

Cycle

INITIAL:
Loc = FIX1
Fuel = Yes

INITIAL:
Loc = FIX1
Fuel = Yes

FailureFailureac1 ac2

tt1

ttf1tt1

ttf1Loc = FIX2
Fuel = Yes

Loc = FIX2
Fuel = Yes Loc = FIX2

Fuel = No

Loc = FIX2
Fuel = No

Loc = FIX1
Fuel = No

Loc = FIX1
Fuel = No

Figure 6-2
As in Figure 6-2, to accurately model the dependent

temporal transition tt1 from the initial state using Equation
6-3, it requires the probability rate function of the other tt1,
which, unfortunately depends in turn on the tt1 in the initial
state. A reasonable heuristic to compute the probability
rate functions for the dtts that are in every state in a cycle is
to traverse the cycle, applying equation 6-3, until the
computation converges.

7. Evaluation
Although the theory points out the expected error for

modeling a dtt probability rate function is the variance of
Ptrue(dtt, t, sk), which is domain dependent, we would like
to see how well our heuristic works in practice. We have

42

generated a set of state diagrams with various temporal
transitions. We find the state probabilities of the states
using a stochastic method, a random walk in the state
diagram. Then, we compare the results of the simulations
with the state probabilities computed by the set of
equations described earlier. As the probabilities calculated
by the two methods are reasonably close, we are confident
that the theory provides a reasonable framework to model
dtt probability rate functions.

Over the 20+ experiments we ran, each for 50000 to
100000 trials, the errors ranged from about 1% to 8%. We
have noticed that the errors tend to be larger for periodic
functions (in which the probabilities rise and fall
periodically). Qualitatively speaking, since we are
essentially taking an average of all the "delayed"
probability rate functions, the error between the predicted
value and the "observed" value is therefore very sensitive
to the shape of the "true" probability rate function. Details
of our experiments are in the full paper.

We have also evaluated the backward compatibility of
our new model to the non-probabilistic CIRCA originally
developed by Musliner (Musliner, 1993). Space limitations
preclude a full description here (see the full paper for
more) but by describing temporal (and event) transitions as
having a step-shaped probability rate function reaching a
value strictly between 0 and 1, and a (guaranteed) action
transition of having a step that reaches probability 1, our
model generates the same “reachable state” space where
reachable states have probability greater than zero.

8. Conclusions and Future Work
A framework for modeling the probabilistic nature of

external events as functions of time has been developed. In
contrast with traditional AI planners which concentrate on
“what to do”, CIRCA-II emphasizes also on “when to do
it” such that the probability of system failure is below a
threshold. Moreover, we also present an algorithm to order
the states by their likelihood so that the system can cut off
the unlikely events from consideration in case of
insufficient resources as illustrated in the previous section.

CIRCA-II is also a planner such that each state is only
represented by one node in the state diagram regardless of
the multiple paths leading to the state. Unlike a traditional
AI planner, CIRCA-II either ignores or aggregates the
information about how it reaches a state; this has
significant benefits in devising a real-time control
schedule, but also is a weakness. To plan only a single
action for a group of states, CIRCA-II is considering only
the worst-case temporal transitions (or, in the case of
dependent temporal transitions, the worst-case temporal
transition chains). There is a class of problems that
CIRCA-II cannot find the solutions for because of its
overly conservative philosophy. So, CIRCA-II is sound
but not complete. There is ongoing research to address this
dilemma.

9. Acknowledgements
The authors gratefully acknowledge the detailed

comments and directions suggested by their Honeywell
colleagues, Robert Goldman and David Musliner.

10. References
E. M. Atkins, E. H. Durfee, and K. G. Shin, “Plan Development

using Local Probabilistic Models,” in Uncertainty in
Artificial Intelligence: Proceedings of the Twelfth
Conference, August 1996.

E. M. Atkins, E. H. Durfee, K. G. Shin, “Detecting and Reacting
to Unplanned-for World States,” Proceedings of AAAI, pp.
571-576, July 1997.

E. M. Atkins, "Plan Generation and Hard Real-Time Execution
with Application to Safe, Autonomous Flight", Ph.D. Thesis,
The University Of Michigan, 1999.

C. Boutilier, T. Dean, and S. Hanks, “Planning Under
Uncertainty: Structural Assumptions and Computational
Leverage,” EWSP, 1995

T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson, “Planning
with Deadlines in Stochastic Domains,” Proceedings of
AAAI, pp. 574-579, July 1993.

J. G. Kemeny, and J. L. Snell, “Finite Markov Chanis,” p.52-52,
1960.

N. K. Kushmerick, S. Hanks, D. Weld, “An Algorithm for
Probabilistic Least-Commitment Planning,” Proceedings Of
AAAI, pp. 1073-1078, July 1994.

M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the
Complexity of Solving Markov Decision Problems,”
Proceedings of UAI-95, August 1995.

G. F. Lawler, “Introduction to Stochastic Processes,” pp. 55-57,
1995.

D. J. Musliner, “CIRCA: The Cooperative Intelligent Real-Time
Control Architecture,” Ph.D. Thesis, The University Of
Michigan, 1993.

D. J. Musliner, E. H. Durfee, and K. G. Shin, “World Modeling
for the Dynamic Construction of Real-Time Control Plans,”
Artificial Intelligence, vol. 74, pp. 83-127, 1995.

